

Chongele Education Society's Parvatibai Chowgule College of Arts and Science Autonomous Accredited by NAAC with Grade 'A*' Best Affiliated College-Goa University Silver Jubile Year Award

MINUTES OF MEETING OF THE BOARD OF STUDIES IN BIOTECHNOLOGY

HELD ON 17th FEBRUARY, 2024 at Parvatibai Chowgule College of Arts & Science (Autonomous) Margao – Goa

Vide Chowgule College notice F.133(C)/1397 (dated 6th February 2024) a meeting of this BOS was convened on 17th February, 2024 at 02:00 pm through online Google meet, Parvatibai Chowgule College of Arts & Science, Margao – Goa. Since the number of members present represented the Quorum, the BoS began its proceedings.

Members present:

- 1. Dr. Starlaine Mascarenhas Chairperson
- 2. Dr. Shaiesh Morajkar Member Secretary
- 3. Prof. Meenal Kowshik AC Nominee
- 4. Dr. Flory Pereira AC Nominee
- 5. Dr. Tamal Raha Industrial Representative
- 6. Dr. Aman Dongre Member
- 7. Ms. Ravina Pai Member
- 8. Ms. Reshma Zakane Member
- 9. Ms. Samradni Paigankar- Alumni student representative

Members Absent with intimation:

1. Prof. Srikanth Mutnuri – VC Nominee

Proceedings:

The Chairperson welcomed the members of the Board of Studies (BOS). The Chairperson introduced and explained the agenda for the meeting and read out the minutes of the previous B.O.S meet. The meet continued taking up the following agenda.

Agenda Items:

- a) Revision of CLO & alignment of CLO to PLO/PO in accordance with OBE. Applicable only to the NEP implemented syllabus.
- b) To approve minor revision of syllabi of the following courses under the existing structure:
 - i. Semester 5: Plant Biotechnology (BIO-V.E-11)
 - ii. Semester 6: Industrial Biotechnology (BIO-VI.C-8)
- c) Any Other Business (A.O.B.)

<u>PART B</u>: Important Points/ recommendations of BOS that require consideration / approval of Academic Council:

- 1. Revised Course Learning outcomes (CLO's) of three year undergraduate degree programme in Biotechnology (under the NEP course structure) (Annexure A).
- 2. Minor revision in syllabi of the following semester V and VI courses under the existing course structure (Annexure A):
 - a. Major elective course in semester V: Plant Biotechnology (BIO-V.E-11)
 - b. Major core course in semester VI: Industrial Biotechnology (BIO-VI.C-8)
- 3. Revised Programme Learning Outcomes (PLO's) of three year undergraduate degree programme in Biotechnology (under the NEP course structure) (Annexure B).

Dr. Shaiesh Morajkar Member Secretary Board of Studies

Dr. Starlaine Mascarenha5 Chairperson Board of Studies

Dated: 24th February 2024

Annexure A Summary of the changes incorporated in CLOs

Sem ester	Course	Existing CLOs	Revised CLOs	Reason for revising
Ι	UG-BIO-101: Biomolecules	CLO1: Discuss the structure of atoms, biomolecules and chemical bonds. CLO2: Understand concepts of enzyme kinetics, bio-polymers and metabolic reactions in a living system. CLO3: Understand and apply general laboratory safety measures as well as calculate for preparation of various chemicals for experiments. CLO4: Prepare different solutions such as buffers, reagents and stock solutions for experiments independently. CLO5: Operate various lab instruments such as weighing balance, water bath and spectrophotometer.	landmarks of biochemistry and comprehend the structure cum functional significance of major biomolecules- carbohydrates and proteins. CLO2: Elucidate the structure and functional importance of lipids and nucleic acids CLO3: Understand concepts of modified biomolecules such as vitamins, hormones, enzyme kinetics, and biomolecular interactions in a living system. CLO4: Obtain practical knowledge of general laboratory safety measures, preparation of different solutions such as buffers, reagents, stock solutions and working of instruments such as weighing balance, water bath and	Aligning and mapping with the framework of OBE
	UG-BIO-102: Cell biology	CLO1: Understand the structure and functional aspects of the Cell wall and plasma membrane. CLO2: Correlate the function of each cell organelle with proper coordination. CLO3: Demonstrate an understanding of cell communication. CLO4: Prepare various plant and	and plasma membrane. CLO2: Comprehend the structure and functional importance of each cell organelle. CLO3: Gain an understanding of cell	

		animal specimens for observation of cell structures CLO5: Identify and analyse different biological cells using a compound microscope.	analysisofcellorganelle&ultrastructurevia	
	UG-BIO- SEC1: Mushroom cultivation	CLO1: Understand the importance of mushroom cultivation. CLO2: Understand the mushroom cultivation technology and types of storage methods.	CLO1: Appreciate the types of mushrooms- edible and non-edible. CLO2: Understand the process of mushroom cultivation (spawn cultivation, setting up of farm, growing and harvesting mushroom) CLO3: Learn about different value products and preservation techniques.	
	UG-BIO- MDC1: Food		principle and	
	and Ecomontation	fermentation	importance of	
	Fermentation technology	technology. CLO2: Understand the	fermentation technology along with	
	teennology	principle and benefits	the types of cereal based	
		of fermented foods.	fermented foods.	
		CLO3: Learn about		
		fermentation of cereal	process of production of	
		based foods	fermented beverages	
		CLO4: Learn about	1	
		fermentation of non-	process of production of	
		cereal based foods	non-cereal based	
		CLO5: Prepare simple home based fermented	fermented food such as dairy and non-dairy	
		foods.	products	
II	UG-BIO-103:	CLO1: Understand the	CLO1:Understand the	
	Basic	scope and importance	scope of Microbiology,	
	Microbiology	of Microbiology,	basics of microscopy	
		classification	and bacterial	
		schemes, cultivation,	Taxonomy.	
		preservation and	CLO2: Learn various	
		maintenance of	techniques of culturing,	
		microbial cultures.	preservation and	
		CLO2: Discriminate	maintenance of	
		between various groups of	microorganisms CLO3: Understand the	
		microorganisms and	structure and	
		e		
		also comprehend the	organisation of	

	effects of each group of microorganisms. CLO3: Compare, analyse, apply the concepts of principle, working of microscopes types. CLO4: Adhere to strict laboratory safety measures to be followed in a microbiology laboratory. CLO5: Master skills in aseptic techniques as well comprehend the importance of cleaning and decontamination.	characteristics and reproduction patterns. CLO4:Obtain skills in microscopic observation, aseptic techniques and microbiological culture methods.	
UG-BIO-104: Fundamental	CLO1: Outline the basic principles of	principles of Mendelian	
Genetics	Mendelian genetics and compare and analyse different inheritance patterns as well as solve problems based on genetic principles. CLO2: Compare and contrast different mutations, their effects on cells and the application of the same to research. CLO3: Differentiate between the structure and working of a compound and dissection microscope. CLO4: Construct and interpret a karyotype prepared from a spread of metaphase chromosomes. CLO5: Understand and identify Barr bodies and Giant chromosomes.	genetics and inheritance patterns CLO2:Appreciate the importance of cell division, inbreeding , linkage, crossing over and its significance in population genetics CLO3: Understand the sex determination patterns, pedigree analysis and disorders associated with structural and numerical chromosomal aberrations. CLO4: Understand the working of dissection and compound microscope, and identify Barr bodies, Giant chromosomes, construct and interpret karyotypes	
UG-BIO- SEC2:	CLO1: Understand basics of	CLO1: Introduced to application of	
Elementary	Bioinformatics and its	computers in biology	

tools for application in and basic concepts of	r I
11 1	
visualisation of biological sciences. bioinformatics such a biological data CLO2: Get acquainted nucleotide and protein	
with biological databases. databases and its CLO2: Learn about	+
types, data retrieval basic sequenc	
systems, tools, and alignment tools	
algorithms for analysis CLO3: Comprehend th	
of biological data. visualisation of protei	
structure by various <i>i</i>	ı
silico modelling tools.	4
UG-BIO- CLO1: Gain CLO1: Understand th	
MDC2: Basics awareness on basic types of biodiversity	,
of Biodiversity knowledge of local hotspots and threats.	
biodiversity. CLO2: Acquir	
CLO2: Understand knowledge on th	
basic concepts of identification of specie	
biodiversity of commonly know.	
identification and species flora and fauna.	
generate a sense of CLO3: Emphasise of	
belonging and threats to biodiversit	
ownership to the and the need for	
biodiversity and its conservation by variou	
conservation. strategies through cas	•
studies analysis.	
III UG-BIO-201: CLO1: Understand CLO1: Learn th	•
Molecular basic concepts in discovery of geneti	;
Biology molecular biology material, its transfer and	1
CLO2: Explain the DNA Replication	
structure of DNA and CLO2: Understandin	ŗ
its properties DNA damage, its repair	•
CLO3: Distinguish and process of	f
between DNA, RNA transcription	
and Proteins CLO3: Comprehend th	•
CLO4: Compare concept of genetic code	,
differences between its translation and gen	
replication, expression.	
transcription and CLO4: Perform basi	;
translation processes techniques in molecula	:
in prokaryotes and biology research such a	5
eukaryotes. isolation of geneti	;
CLO5: Describe the material, it	3
mechanism of gene quantification, and	l
transfer and regulation observation.	
UG-BIO-202: CLO1: Understand the CLO1: Elucidate th	
Enzymology structure of an enzyme structure of an enzym	•
and kinetics of enzyme and features of enzym	
catalysed reactions catalysis.	
catalysed reactionscatalysis.CLO2:ComprehendCLO2:CLO2:Comprehend	l
catalysed reactions catalysis.	

	CLO3: Analyse and compare different types of enzyme inhibitions CLO4: Value the wide applications of enzymes and future potential CLO5: Isolate and purify crude forms of enzyme extract and apply appropriate method for determination of activity of enzyme	enzyme inhibitions. CLO3: Understand various enzyme purification techniques and appreciate wide application of enzymes in food, detergent, leather and diagnostic industries CLO4: Learn methods of isolation, and purification of crude	
UG-BIO-203: Metabolism of Biomolecules	CLO1: Understand and explain the metabolic processes of the human body CLO2: Elucidate the interconnections of metabolic pathway. CLO3: Analyse the effect of diet on metabolism and defects caused due to improper metabolism. CLO4: Evaluate the causes and treatment of various metabolic disorders through case studies. CLO5: Estimate and isolate various biomolecules using spectrophotometry, Thin layer chromatography & centrifugation techniques.	CLO1: Understand the basic concepts of human metabolic with emphasis on carbohydrate and amino acid metabolism. CLO2: Appreciate the mechanism of fatty acid and nucleic acid metabolism and analyse the interconnections of various metabolic pathway. CLO3: Analyse the effect of diet on metabolism and evaluate the causes and treatment of various metabolic disorders through case studies. CLO4: Estimate and	
UG-BIO- SEC3: Biostatistics	CLO1: Appreciate the application of statistics in biology. CLO2: Understand the	CLO1: Gain an introduction to Biostatistics & different	

		concepts of sampling, representation and interpretation of the data using graphical methods and MS Excel. CLO3: Solve problems on measures of central tendency, dispersion and hypothesis testing and apply appropriate statistical tools in their final year project work.	measures of data analysis. CLO2: Understand the methods of Regression analysis, Hypothesis testing and application of basic statistical software. CLO3: Carry out Graphical/ Diagrammatic representation of data based on an experimental study.	
	UG-BIO- MDC3: Composting technology	CLO1: Understand the importance and application of compost production for sustainable environment management. CLO2:Undestand the various methods of composting	CLO1:Understand the importance of composting and selection of right organism for the same. CLO2:Appreciate various techniques of composting technology CLO3: Understand the design of composting technology unit and various composting derived value added products.	
IV	UG-BIO-204: Immunology	CLO1: Trace the history of immunology and gain knowledge of the structure and function of the cells and organs of immune systems CLO2: Understand the mechanisms of Ag-Ab reaction, hypersensitivity reactions and importance of Complement system CLO3: Compare and contrast primary and secondary immune response. CLO4: Evaluate the importance of Monoclonal Ab and their role in various	CLO1: Explore the historical development of immunology, differences between the primary and secondary immune response. CLO2: Gain knowledge of the immune system's building blocks, structure and function of the immune system's cells and organs. CLO3: Understand mechanisms of antigen- antibody reactions, hypersensitivity reactions, and the complement system. CLO4: Appreciate the importance of monoclonal antibodies, various	

	immunodeficiency diseases CLO5: Get acquainted with various techniques involved in immunology	immunodeficiency diseases, and the techniques used in immunological research.	
UG-BIO-205: Molecular Genetics	CLO1: Understand the various molecular aspects of human genetics including DNA variation and mutations. CLO2: Differentiate between the various methods of chromosome analysis and cell division CLO3: Compare and contrast the various techniques associated with forensics genetics CLO4: Investigate the risk factors in genetic counselling for individuals with a family history of genetic disorders CLO5: Apply their knowledge of various molecular techniques in order to diagnose specific genetic disorders.	methods of chromosome analysis, cell division, molecular aspects of human genetics including DNA variation and mutations. CO2: Understand the importance of molecular techniques in diagnosis of genetic disorders, calculation of risk factors and application of various genetic counselling strategies CLO3: Appreciate the significance of gene therapy and concepts in forensic genetics CLO4: Obtain practical knowledge of various molecular techniques like electrophoresis and karyotyping to diagnose specific genetic	
UG-BIO-206: Basics of Plant and Animal Sciences	CLO1: Understand classification of plant and animal kingdom CLO2: Compare and contrast the differences in morphology and anatomy in angiosperms CLO3: Examine features of the non- chordates and chordates CLO4: Critique various phyla of the plant and animal	CLO1: Comprehend plant classification system along with morphological and anatomical aspects of Angiosperms CLO2: Elaborate general characteristics and habitats of non- chordates and chordates CLO3: Acquire knowledge of distinctive salient features of each phyla in animal kingdom CLO4: Proficiency in light microscopy aiding	

	kingdoms based on characteristics CLO5: Sketch the morphology and anatomy of selected plant and animal specimens.	to analyse distinct characteristics in plant and animal kingdom	
UG-BIO-207: Tools and Techniques in Biotechnology	CLO1: Comprehend the principle and application of various centrifugation techniques in biological sciences CLO2: Understand the principle and apply various spectroscopic and chromatographic techniques for industrial analysis CLO3: Compare and contrast various electrophoretic techniques used in molecular biology research CLO4: Evaluate the various radioactivity techniques used in biomedical research CLO5: Perform purification and separation of proteins.	CLO1: Understand the concepts of units of measurements, and importance and usage of buffer systems in biological systems CLO2: Learn the principle, types, instrumentation, and applications of various tools and techniques used in biotechnology such as Spectrophotometer, Centrifuge, chromatography, electrophoresis. CLO3: Introduced to the probes used in molecular biology and concepts and techniques using radioactivity. CLO4:Apply various analytical techniques such as spectrophotometery, centrifugation, chromatography and electrophoresis for isolation of major biomolecules.	
UG-BIO- VOC1: Evolution and Anthropology	CLO1: Understand basic concepts of evolution and anthropology and importance in biotechnology CLO2: Explain the evolutionary history and describe the historical development of anthropology CLO3: Compare and contrast past and present cultures	evolutionandanthropologyandimportanceinbiotechnologyCLO2: Explain past andpresentculturesincludingecologicaladaptationswithscientific approachCLO3:CLO3:Describequantitativeand	

		including ecological adaptations with scientific approach CLO4: Examine the quantitative and qualitative methods in the analysis of anthropological data CLO5: Critically evaluate the logic of anthropological research and apply anthropological	the analysis of anthropological data CLO4: Critically evaluate the logic of anthropological research and apply anthropological research to contemporary environmental, social, or health issues worldwide.	
		research to contemporary environmental, social, or health issues worldwide.		
V	UG-BIO-301: Concepts in Genetic Engineering	CLO1: Understand the functions of several enzymes and vectors used in cloning. CLO2: Acquaint to the versatile tools and techniques employed in recombinant DNA technology. CLO3: Explain the construction of DNA & cDNA library CLO4: Procure skills	CLO1: Understand the functions of various enzymes and vectors utilized in the cloning process. CLO2: Appreciate diverse tools and techniques applied in the field of recombinant DNA technology. CLO3: Explain the step- by-step process involved in constructing DNA and cDNA libraries. CLO4: Develop skills in plasmid isolation techniques and selection of recombinants	
	UG-BIO-302: Environmental Biotechnology	CLO1: Explain the scope of Environmental Biotechnology. CLO2: Understand the basic ecological concepts, various pollution, its measurements & remediation. CLO3: Describe the various eco-friendly bio-products. CLO4: Assess the quality of the water	CLO1: Understand the scope and opportunities in Environmental Biotechnology CLO2: Learn the importance of biotechnology in environmental monitoring CLO3: Learn the applications of biotechnology in pollution abatement and about the eco-friendly bio-products.	

r r			
	sample through various parameters like MPN test, dissolved oxygen concentration, biological oxygen demand, chemical oxygen demand and nitrates of water sample. CLO5: Understand the working of sewage treatment plant.	CLO4: Assess the quality of the water sample through various parameters like MPN test, dissolved oxygen concentration, biological oxygen demand, chemical oxygen demand and nitrates of water sample.	
Plant Biotechnology	CLO1: This paper aims at introducing the concept of in vitro culture of plants including set up of a plant tissue culture laboratory, instruments and sterilization techniques. CLO2: This paper will help the students to understand that various parts of the plant may be cultured, with each type of culture having specific applications. CLO3: Plant tissue culture also lends itself for production of transgenic plants which have various applications. CLO4: On completion of this module, the student will be able to	CLO1: Comprehend Plant tissue culture lab techniques encompassing sterilization methods, media preparation and organogenesis CLO 2: Explore different culture techniques involving various plant organs CLO3: Understand the application of plant tissue culture in production of transgenic plants and synthetic biology. CLO4: Develop practical expertise in setting up plant tissue culture lab and techniques for regeneration of explant	
	understand all about plant biotechnology in terms of set up of a laboratory, culture of explants CLO5: In addition, the students will be able to understand genetic engineering methods for production of transgenic plants.		

	UG-BIO-	CLO1. Understand the	CLO1. Understand the	
	VOC2:	CLO1: Understand the importance of general		
	Bioethics and	1 0	laboratory safety	
	Biosafety	laboratories and		
	Diosalety	biosafety guidelines	measures, biosafety levels and guidelines.	
		CLO2: Justify the	CLO2: Gain knowledge	
		design of confinement	on the practical aseptic	
		facilities at different	techniques, standard	
		Biosafety levels,	operating procedures	
		CLO3: Demonstrate	and waste disposal	
			1	
		good laboratory practices	techniques to ensure safety of personnel in a	
		CLO4: Discuss the	laboratory setting,	
		relevance of		
		intellectual property		
		rights to		
		biotechnological	significance of	
		innovations,	intellectual property	
		CLO5: Describe the	(IP) rights in	
		standard operating	ι, ^γ	
		procedures for	types of IP protection,	
		disposal of various	and their role in	
		types of wastes from	supporting research and	
		the Biotechnology	development.	
		laboratory	CLO4: Understand the	
		luooluloi y	significance of biosafety	
			and bioethics through	
			real life case- studies	
			and application in	
			protection of GMO's	
			and GEM's	
VI	UG-BIO-304:	CLO1: Understand	CLO1: Understand	
	Industrial	and explain various		
	Biotechnology	features of a fermenter.	bioreactors along with	
	_1000000065	CLO2: Comprehend	gaining insight in	
		various concepts of	0 0	
		Upstream and	selection and	
		Downstream	preservation techniques.	
		processes.	CLO2: Learn about	
		CLO3: Describe the		
		production processes	fermentation media,	
		of fermentation	product (detection and	
		products like wine or	assay) and scale-up.	
		vinegar at the	CLO3: Comprehend	
		industrial level.	downstream processing	
		CLO4: Design small	1 0	
		scale experiments to	CLO4: Gain practical	
		produce common	skills in screening of	
		enzymes like amylase.	antibiotic producing	
		CLO5: Prepare basic	microbes and	
		fermentation products	fermentation processes.	
		like wine, vinegar, etc.		
		ince which, which gai, etc.		

	UG-BIO-305:	CLO1: Explain the	CLO1: Gain basic	
	Bioinformatics	scope of	knowledge of the	
	Zionnonnanos	Bioinformatics	concepts of die	
		CLO2: Understand the	Bioinformatics and its	
		basic concept of		
		biological databases,		
		various types and		
		applications of	biological databases,	
		biological databases.	various types and	
		CLO3: Describe the	applications of	
		various applications of	11	
		BLAST and FASTA in	CLO3: Describe the	
		understanding	various applications of	
		differences in	BLAST and FASTA in	
		evolutionary patterns	understanding	
		CLO4: Assess the	differences in sequence	
		mutations, genetic	alignment and	
		disorders and	Phylogeny	
		understand importance	CLO4: Will be able to	
		of drug design <i>In silico</i>	construct an evolution	
		CLO5: Will be able to	tree, cladogram, retrieve	
		construct evolution	and biological	
		tree, cladogram,	information accessed	
		retrieve and biological		
		information accessed	information resources.	
		through various		
		information resources.		
ľ	UG-BIO-306:	CLO1: Understand the	CLO1: Comprehend the	
	Animal Cell	basic concepts of	basic concepts of animal	
	culture	animal cell culture.	cell culture and the	
	culture	CLO2: Comprehend		
		the various	1	
			(equipment and media)	
		techniques for animal		
		cell culture and	CLO2: Understand the	
		importance of the	importance of various	
		same.	cell culture techniques,	
		CLO3: Understand the	growth cycle, cell	
		importance of primary	synchronization,	
		and established cell	primary and established	
		lines for	cell lines for	
		biotechnological	biotechnological	
		applications.	applications.	
		CLO4: Appreciate the	CLO3: Appreciate the	
		various methods of		
		characterization and	characterization, cell	
		growth assessment	separation, growth	
		techniques in culturing	assessment techniques	
		animal cells.	and applications of	
		CLO5: Understand the	animal cells in	
		applications of animal	diagnostics and	
		cells in the	therapeutics.	

	development of	CLO4: Develop	
	1	1	
	disease diagnostics	1	
	and therapeutics.	cell culture media	
		preparation, basic cell	
		culture and subculture	
		techniques and growth	
		assessment	
		methodology.	
UG-BIO-	CLO1: Understand the	CLO1: Understand the	
VOC3:	theory behind the	theory behind the	
Advanced (Cell working of various	working of various	
Biology	techniques in cell	techniques in cell	
	biology.	biology.	
	CLO2: Explain the	CLO2: Explain the	
	processes of	processes of membrane	
	membrane transport	transport and regulation	
	and signal	of the cell cycle events.	
	transduction.	CLO3: Understand the	
	CLO3: Describe the	importance of various	
	regulation of the cell	signal transduction	
	cycle events.	pathways and scope of	
	CLO4: Isolate and	cancer biology	
	visualize the	CLO4: Isolate and	
	subcellular organelles.	visualize the subcellular	
	CLO5: Prepare slides		
	and identify various	stages of Mitosis and	
	stages of Mitosis and	Meiosis.	
	Meiosis.		

a :	Summary of the changes incorporated in syllabus						
Semester	Course	Existing	Changes suggested	Reason			
V	Plant	Module 3: Gene		Refining course by			
	Biotechnology (BIO-V.E-11)	were repetitive and	Module 3 as follows: Genetic transformation	course by substituting			
	(DIO-V.L-11)	already explained in		repetitive			
	(Under the	the semester 5 course	-	sections with			
	existing course	viz. 'Concepts in	11	plant			
	structure)	Genetic engineering'.	8 1	synthetic			
	sudduid)	Hence content	-	biology.			
		restricted to methods		8)			
		of gene transfer in	· · · · · · · · · · · · · · · · · · ·				
		plants only with					
		applications of	resistance; increasing				
		transgenic plants.	shelf life of fruits;				
		Additionally, a	Biofortification- golden				
		section on 'Plant	rice and edible vaccines				
		Metabolic	Plant Metabolic				
		Engineering with	8 8				
		Synthetic Biology' is					
		introduced under	1				
		module 3	engineering of plants to				
			enhance the production of				
			pharmaceuticals and				
			nutraceuticals; a case				
			study of successful metabolic engineering				
			projects, synthetic				
			biology approaches for				
			pathway optimisation and				
			enzyme engineering				
VI	Industrial	Module 1: Did not	Module 1: Added rotary	Restructuring			
			drum type of bioreactors	-			
	(BIO-VI.C-8)	type of Bioreactors	Module 2: Added	for better			
	_	Module 2: Did not	methods of	understanding			
	(Under the	have Methods of	immobilization and	of the			
	existing course	immobilization.	restructured types of	concepts with			
	structure)	Module 3: mentioned	1	relevance to			
		about organisms in		the concerned			
		general.	methods into physical and	module.			
			mechanical.				
			Module 3: Added a				
			component on				
			industrially important				
			organisms				

Annexure A Summary of the changes incorporated in syllabus

<u>Revised Syllabus (under the existing course structure)</u> (To be implemented w.e.f. Acad. Year 2024-2025)

BIO-V.E-11: PLANT BIOTECHNOLOGY

Course Title	:	Plant Biotechnology
Course Code	:	BIO-V.E-11
Credits	:	4
Marks	:	100

Course Objectives: This course aims at introducing the concept of in vitro culture of plants including set-up of a plant tissue culture laboratory, instruments and sterilization techniques. This course will help the students to understand that various parts of the plant may be cultured, with each type of culture having specific applications. Plant tissue culture also lends itself to the production of transgenic plants which have various applications.

Course Learning Outcomes

Upon completion of the course, the student will be able to:

CLO1: This paper aims at introducing the concept of in vitro culture of plants including set up of a plant tissue culture laboratory, instruments and sterilization techniques.

CLO2: This paper will help the students to understand that various parts of the plant may be cultured, with each type of culture having specific applications.

CLO3: Plant tissue culture also lends itself for production of transgenic plants which have various applications.

CLO4: On completion of this module, the student will be able to understand all about plant biotechnology in terms of set up of a laboratory, culture of explants

CLO5: In addition, the students will be able to understand genetic engineering methods for production of transgenic plants.

BIO-V.E-11: PLANT BIOTECHNOLOGY (THEORY)

Module I

History and development of plant tissue culture 2 hrs

Overview of plant tissue culture, Milestones in plant biotechnology

Laboratory organization 4 hrs

Washing and drying facility; general laboratory and media preparation area; transfer area; culture room; growth chambers and greenhouse (ideal conditions for incubation and maintenance of cultures/plants).

Sterilization techniques 2 hrs

Sterilization techniques used for plant material and culture media– steam, dry, filter, ultraviolet, alcohol, flame and chemical

Plant tissue culture media 4 hrs

Major and minor inorganic nutrients; vitamins; carbon source; hormones; complex organic additives and their functions; composition of some commonly used plant tissue culture media – MS, White's, Nitsch, Gamborg's B5

Totipotency 2 hrs

Totipotency and its Importance; Various parts of the plant serving as Explants

Organogenesis 1 hr

Root and shoot regeneration and applications

Module II

Organ culture and its applications 5 hrs

Root; shoot tip/meristem; anther and pollen; ovary and ovule embryo **Callus and cell suspension cultures 4 hrs**

(15 Hours)

Callus culture – principle; characteristics of callus tissue; applications; cell suspension culture – principle; isolation; growth patterns; concept of batch and continuous culture; viability testing

Somaclonal variation 2 hrs

Concept; isolation of variants; mechanisms of soma clonal variation and applications

Somatic embryogenesis and artificial seeds 2 hrs

Somatic embryogenesis – principle; procedure and applications; artificial seeds – methods of production and applications

Applications of Tissue Culture in Plant Sciences 2 hrs

Micropropagation; gene conservation banks; forestry

Module III

Protoplast culture and somatic hybridization 4 hrs

Protoplast culture – principle; isolation of protoplasts (mechanical and enzymatic); methods of culture; checking viability; somatic hybridization - protoplast fusion (spontaneous and induced); selection of hybrid protoplasts; applications of somatic hybridization

Production of secondary metabolites 2 hrs

Classification of secondary metabolites with examples; production using culture methods - callus culture; cell suspension culture; hairy root culture (*A. rhizogenes*); immobilized cell systems

Genetic transformation techniques and applications of transgenic plants 6 hrs

Agrobacterium-mediated transformation, biolistics, Insect resistance (BT toxin); drought and salt tolerance; herbicide resistance; increasing shelf life of fruits; Biofortification- golden rice and edible vaccines

Plant Metabolic Engineering with Synthetic Biology 3 hrs

Techniques for metabolic engineering of plants to enhance the production of pharmaceuticals and nutraceuticals; a case study of successful metabolic engineering projects, synthetic biology approaches for pathway optimisation and enzyme engineering

PRACTICALS

- 1. Washing, Packing and Sterilization of Glassware
- 2. Preparation of Stock solutions for Murashige and Skoog (MS) medium
- 3. Preparation, sterilization and pouring of MS medium
- 4. Aseptic germination of seedlings
- 5. Callus induction from hypocotyl and carrot cambial explants and subculturing
- 6. Shoot tip culture
- 7. Regeneration of shoot/root from callus
- 8. Setting up of cell suspension culture and checking viability by Evan's blue method
- 9. Setting up an in vitro culture from a seed embryo (embryo culture)

10. Encapsulation of somatic/true embryo (synthetic seeds) and Regeneration of Plants from Synthetic Seeds

REFERENCE BOOKS:

Mandatory:

1. De, K.K. (2008) Plant Tissue Culture, New Central Book Agency Pvt. Ltd.

2. Slater, A., Scott, N., & Fowler, M. (2008). Plant biotechnology: the genetic manipulation of plants. OUP Oxford.

- 3. Jha, T.B. & Ghosh, B. (2005) Plant Tissue Culture, University Press (India) Pvt. Ltd.
- 4. Singh, B.D. (2005) Plant Biotechnology, Kalyani Publishers.
- 5. Chawla, H.S. (2002) Introduction to Plant Biotechnology, Science Publishers Inc. USA.

(15 Hours)

Supplementary:

1. Gahlawat, S. K., Salar, R. K., Siwach, P., Duhan, J. S., Kumar, S., & Kaur, P. (Eds.). (2017). Plant biotechnology: recent advancements and developments (pp. 1-390). Singapore: Springer. 2. Smith, R. H. (2012). Plant tissue culture: techniques and experiments. academic press.

3. Hammond, J., McGarvey, P., & Yusibov, V. (Eds.). (2012). Plant biotechnology: new products and applications (Vol. 240). Springer Science & Business Media.

4. Purohit, S. D. (2012). Introduction to plant cell tissue and organ culture. PHI Learning Pvt. Ltd.

5. Altman, A., & Hasegawa, P. M. (Eds.). (2011). Plant biotechnology and agriculture: prospects for the 21st century. Academic press.

WEB REFERENCES :

1. Organogenesis: <u>https://www.plantcelltechnology.com/blog/organogenesis-in-plants/</u> 2.Tissue culture technology:

https://www.sciencedirect.com/science/article/abs/pii/S0140196301908845

3. Application of Plant Biotechnology:

https://www.sciencedirect.com/science/article/pii/B9780128022214000054

4. Plant Synthetic Biology:

https://www.sciencedirect.com/science/article/pii/S221466282030044X

5. Cell Suspension Culture:

https://www.sciencedirect.com/science/article/abs/pii/S0926669020306671

BIO-VI.C-8: INDUSTRIAL BIOTECHNOLOGY

Course Title: Industrial Biotechnology Course Code: BIO-VI.C-8 Credits: 4 Marks: 100 Pre-requisites: Completion of BIO-II.C-4-Basic Microbiology

Course Objectives: This course is designed to introduce the students to the basic concepts in Industrial Biotechnology. The paper covers concepts in Industrial Biotechnology, mainly introducing the basics of upstream processes in fermentation technology on an industrial scale.

Course Outcomes

Upon completion of the course, the student will be able to:

CLO1: Understand and explain various features of a fermenter.

CLO2: Comprehend various concepts of Upstream and Downstream processes.

CLO3: Describe the production processes of fermentation products like wine or vinegar at the industrial level.

CLO4: Design small scale experiments to produce common enzymes like amylase.

CLO5: Prepare basic fermentation products like wine, vinegar, etc.

BIO-VI.C-8: INDUSTRIAL BIOTECHNOLOGY (THEORY) Module I

Fermentation equipment and its use - 10 hrs

Definition of fermenter/bioreactors; structure of ideal fermenter; definition and uses of impellers and their types; sparger s and their types; baffles; headspace; controls and sensors (temperature, pH, antifoam, dissolved oxygen and carbon dioxide sensor); Types of reactors (definition, description, diagram and uses)- stirred tank reactors; bubble columns; airlift bioreactors (internal and external loop); fluidized bed; packed bed column, photobioreactors; tray bioreactors, Rotary drum bioreactor.

Screening and selection of microorganisms - 3 hrs

Primary screening-definition; techniques; crowded Plate; auxanography; enrichment; indicator dye; secondary screening- definition and features; giant colony technique

Stock cultures - 2 hrs

Cryogenic preservation; aims of preservation of cultures; definition of working and primary stock cultures; techniques of preservation- serial subculture, sterile soil, water, silica gel; sterile mineral oil; lyophilisation

Module II

Types of fermentation processes - 3 hrs

Surface/solid state (SSF) & amp; Submerged Fermentation (SmF); Batch, fed-batch and Continuous systems; Immobilization methods in brief.

Fermentation media - 5 hrs

Characteristics of an ideal fermentation media; production media; media composition crude, synthetic; media; sterilization methods – Physical (Heat & radiation), chemical and Mechanical (filtration); batch and continuous sterilization, inoculum preparation.

Detection and assay of fermentation products - 5 hrs

Physical or chemical assay- titration and gravimetric assay; turbidity analysis, cell determination; spectrophotometric assay; chromatographic partition assay; biological assay- concept benefits and drawbacks; diffusion assay; turbidimetric and growth assay; end point assay; metabolic response assay; enzymatic assay

Scale up of fermentations and increasing product yields - 2 hrs

(15 Hours)

(15 Hours)

Significance of scale up; pilot fermenters; increasing product yields by mutagens-physical and chemical mutagens/strain improvement

Module III

Downstream processing - 10 hrs

Biomass: separation of cells flocculation; floatation; filter aids and filtration (surface, depth); centrifugation- batch centrifuge Ex: tubular bowl centrifuge; continuous centrifuge Ex: Basket centrifuge; disintegration in brief: mechanical Ex: ultrasonication; homogenisers and use of ballotine; non mechanical Ex: thermal lysis; chemical detergent solubilisation, organic solvents; enzymatic methods Ex: Lysozyme

Broth: Enrichment: evaporation, membrane filtration, liquid-liquid extraction, precipitation, adsorption Purification: chromatography

Formulation - crystallization and drying (convection drying Ex: spray dryers, freeze drying) Industrial production - 5 hrs

Industrially important organisms; fermentation media and conditions; downstream processing and uses -alcohol /Wine; penicillin; vinegar;

PRACTICALS

1. A study on the phases of growth of microorganisms during batch fermentation (equipment: Erlenmeyer flask, medium: nutrient broth, inoculum: E. coli).

- 2. Parts of a fermenter
- 3. Preparation and sterilization of medium for batch fermentation process
- 4. Batch fermentation using fermenter
- 5. Preparation and sterilization of medium for fed-batch fermentation process
- 6. Fed-batch fermentation
- 7. Decontamination and sterilization of the fermenter
- 8. Primary screening of antibiotic producing bacteria by crowded plate technique
- 9. Secondary screening for antibiotic producers by Giant Colony Technique
- 10. Production of wine (from pineapple or any other fruit/vegetable) using yeast
- 11. Production of vinegar from toddy

12. Estimation of total reducing sugars and acidity (total and volatile) in wine and vinegar (before and after fermentation)

REFERENCES

Mandatory:

- 1. Patel A.H. (2012). Industrial Microbiology, MacMillan Publishers India Ltd. Maharashtra, India.
- 2. Casida L.E. (2009). Industrial Microbiology, New Age International (P) Ltd., New Delhi, India.
- 3. Okafor N. (2007). Modern Industrial Microbiology and Biotechnology, Science Publishers Enfield, NH, USA.
- 4. Stanbury P. F, Whitaker A. & Hall S. J. (1997). Principles of fermentation technology, 2nd Edition, Aditya Books Pvt. Ltd, New Delhi, India.
- 5. Prescott & Dunn. (1982). Industrial Microbiology, 4th edition, AVI Publishing Co, New Delhi, India.

Supplementary:

- 1. Cruger W. & Cruger A. (2007), A Textbook of Industrial Microbiology. Sinauer associates pub. Devon, UK.
- 2. Ratlege C. (2006). Basic Biotechnology. Cambridge University Press.Cambridge, UK
- 3. Sivasankar B., (2005) Bioseparations: Principles and techniques. 2005. Prentice hall of India Ltd. Delhi, India.

- 4. Prave P., Faust U., Sitting W., & Sukatsch D.A., (2004). Fundamentals of Biotechnology. 2004. Wiley- VCH publishers, Weinheim, Germany.
- 5. Rutledge C. & amp; Kristiansen B. (2001). Basic Biotechnology, 2nd edition. Cambridge press, UK.

WEB REFERENCES

- 1. Wine Fermentation: https://www.ncbi.nlm.nih.gov/books/NBK234683/
- 2. Downstream processing: <u>https://www.ncbi.nlm.nih.gov/books/NBK236005/</u>
- 3. Isolation and Screening: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4027325/
- 4. Fractional Distillation: <u>https://www.youtube.com/watch?v=3pL2X-8-eVk</u>
- 5. Photobioreactors: https://www.sciencedirect.com/science/article/pii/S2095809917304241

Annexure B

PROGRAMME LEARNING OUTCOMES (PLO)

After successful completion of a three years Bachelor's degree in **<u>Biotechnology</u>**, the student will be able to:

PLO-1: SKILL DEVELOPMENT IN CELL CULTURE, MOLECULAR BIOLOGY AND BIOPROCESS TECHNOLOGY	Gain mastery in core lab techniques like cell culture, molecular biology, and bioprocessing, enabling them to conduct experiments, and contribute meaningfully to diverse projects.	
PLO-2: DIAGNOSTIC AND INDUSTRIAL READINESS	Apply genetic engineering techniques to ace industrial processes to produce valuable products like enzymes, biofuels, biopolymers and biopharmaceuticals, equipping them for roles in fields like diagnostics, agriculture, environmental	
PLO-3: COMPUTATIONAL AND BIOINFORMATICS LITERACY	science, and food technology. Understand the use of computational tools to analyze biological data and it's applications in genetic diseases and evolutionary relationships.	
PLO-4: INCULCATING ENTREPRENURIAL APTITUDE		