DEPARTMENT OF BOTANY SYLLABI

COURSE STRUCTURE – DEPARTMENT OF BOTANY Three year B.Sc. Degree Course in BOTANY

Semester	Core				Elective	
I	BOT-I.C-1 Plant diversity	BOT-I.C-2 Cell Biology and Biomolecules				
II	BOT-II.C-3 Plant Anatomy and Embryology	BOT-II.C-4 Microbiology				
III	BOT-III.C-5 Physiology of Plants		BOT-III.E-1 Ecology and Conservation	BOT-III.E-2 Systematics of flowering plants and Phylogeny	BOT-III.E-3 Enzymes and their metabolic pathways	BOT-III.E-4 Herbal Cosmetology
77.7	DOT W. C. C		DOT TUE	DOT TITE	DOT 111 F	DOT 111 D.
IV	BOT-IV.C-6 Cytogenetics		BOT-IV.E-5 Plant Breeding and Biostatistics	BOT-IV.E-6 Techniques and Instrumentation in Botany	BOT-IV.E-7 Plant pathology	BOT-IV.E-8 Algal Biotechnology
V	BOT-V.C-7 Plant Molecular Biology		BOT-V.E-9 Bioinformatics	BOT-V.E-10 Seed Technology	BOT-V.E-11 Plant Drug Technology and Pharmacognosy	BOT-V.E-12 Organic Farming
VI	BOT-VI.C-8 Plant Genetic Engineering		BOT-VI.E-13 Plant tissue culture	BOT-VI.E-14 Horticulture, Floriculture and Landscaping	BOT-VI.E-15 Economic Botany	BOT-VI.E-16 Applied Mycology

COURSE TITLE: PLANT DIVERSITY (THEORY) W.e.f. July 2022

COURSE CODE: BOT-I.C-1.

MARKS: 100 (75 theory + 25 Practical)

CREDITS: 4 (3 theory + 1 Practical) COURSE

DURATION: 45 HOURS

PREREQUISITE COURSES: Biology at XIIth preferred.

COURSE OBJECTIVES:

This paper provides knowledge on morphology, structure and importance of the lower group of organisms. Education and awareness about plant diversity, its role in sustainable livelihoods.

COURSE OUTCOMES:

Upon successful completion of the course, students will be able:

CO 1: State, describe and explain the characters and evolutionary aspects of different plant groups of lower plants.

CO 2: Define, Describe, correlate and compare the lower plant groups and fossils. CO 3: Position a given lower plant as per the classification studied.

CO4: Sketch the morphology and anatomy of selected lower plants.

Sr.No.	UNITS, TOPICS AND SUB-TOPICS	Hour
		S
MODU	LE 1: ALGAE AND FUNGI	15
UNIT I	ALGAE	
1.1	Five kingdom classification	
1.2	Classification of algae (Cyanobacteria, Chlorophyta, Phaeophyta and Rhodophyta) following Lee (1999) upto groups with general characters and examples	
1.3	Endosymbiotic theory: origin of plastids	
1.4	Cyanophyceae:Distribution,systematic position and life cycle of <i>Nostoc</i> and Charophyta: <i>Chara</i>	
UNIT 1	II: FUNGI	
2.1	General characteristics, Classification, economic importance. Systematic position, life history of <i>Puccinia</i> and <i>Penicillium</i>	
MODU	LE 2: BRYOPHYTES AND PTERIDOPHYTES	15
UNIT I	II: BRYOPHYTES	
3.1	General characters, brief classification and alternation of	

	TOTAL	45
5.5	Economic importance of Cyanobacteria, algae, fungi, bryophytes, pteridophytes and gymnosperms.	
5.4	Lichens: Structure, Ecological and economic importance of lichens	
5.3	Fossils and fossilization, importance of fossils (with a mention of Birbal Sahni institute)	
5.2	Systematic position, life history of <i>Pinus</i> and <i>Gnetum</i>	
5.1	General characters, brief classification, alternation of generation of Gymnosperms	
	V: GYMNOSPERMS, PALEOBOTANY, LICHENS CONOMIC IMPORTANCE.	
	ULE 3: GYMNOSPERMS, PALEOBOTANY, LICHENS CONOMIC IMPORTANCE.	15
4.2	Structure, reproduction, life history and systematic position of <i>Psilotum</i> , <i>Lycopodium</i> and <i>Marsilea</i> .	
4.1	General characters, brief classification, stelar evolution, alternation of generation.	
UNIT	IV: PTERIDOPHYTES	
3.2	Study of morphological and anatomical studies and reproductive character of <i>Riccia</i> , <i>Marchantia</i> , <i>Anthoceros and Funaria</i> .	
	generation	

COURSE TITLE: PLANT DIVERSITY (PRACTICAL)

COURSE CODE: BOT-I.C-1

MARKS: 25 CREDITS: 1

PRACTICAL SESSIONS: 15

Sr. No	Module 4: Topics	Practical Sessions
1.	Morphological study of algal and Blue green algal forms: Oscillatoria/Nostoc, Chara, Sargassum, Polysiphonia	03
2.	Morphological study of fungal forms: <i>Puccinia, Penicillium, Albugo</i> and <i>Rhizopus</i>	03
3.	Study of lichens (Permanent slide/ specimen)	01
4.	Study of fossils: (Permanent slide/ specimen)	01
5.	Morphological and anatomical study of: i. Bryophyte (preferably <i>Riccia</i> or <i>Anthoceros</i>) ii. Pteridophyte (preferably <i>Selaginella</i>) iii. Gymnosperm (preferably <i>Cycas</i>)	05
6.	Mini project: Collection and field study of locally available Algae, Bryophytes, Pteridophyte, Gymnosperms and Lichens	02
	Total	15

REFERENCES:

- 1. Alexopoulos, Constantine J.;Mims, Charles W. (1983). *Introductory Mycology*; 3rd edition; New Delhi: Wiley Eastern Limited.
- 2. Fritsch, F.E.,(1956). *The structure and reproduction of the Algae*; Volume I and II. Cambridge University Press.
- 3. Kar, Ashok Kumar; Gangulee, Hirendra Chandra (2006). *College Botany:* Volume II; 2nd Edition; Kolkata: New Central Book Agency (P)Ltd.
- 4. Parihar N.S., (2012); *An introduction to Embryophyta: Pteridophytes*. Vol II, fifth edition, Surjeet Publications.
- 5. Parihar N.S., (2013); An introduction to Embryophyta: Bryophyta. Vol I, fifth

- edition, Surject Publications.
- 6. Prescott G. W., (1984); Algae: A review; Lubrecht& Cramer Ltd.
- 7. Sharma, O. P. (2017). *Diversity of Microbes and Cryptogams- Bryophyta*. McGraw Hill Education.
- 8. Sharma, O. P. (2017). *Diversity of Microbes and Cryptogams- Pteridophyta*. McGraw Hill Education.
- 9. Sharma, O. P. (2017). *Diversity of Microbes and Cryptogams*. McGraw Hill Education.
- 10. Smith, Gilbert M. (1955). Cryptogamic Botany Bryophyta & Pteridophyta Volume 2; 2nd Edition; McGraw-Hill book Comp. Tokyo.
- 11. Smith, Gilbert M. (1955). Cryptogamic Botany Algae & Fungi Volume 1;2nd
- 12. Vashistha, B.R. (2016). Botany for Degree Students Fungi. S Chand & Company.
- 13. Vasishtha B.R. And Sinha A. K. (2005). *Botany for degree students* Part 1 Algae; 1st Edition S. Chand & Company Ltd.

Web References:

- 1. http://www.mycolog.com/
- 2. https://www.algaebase.org/
- 3. https://www.conifers.org/
- 4. http://www.bsienvis.nic.in/Database/Pteridophytes-in-India_23432.aspx
- 5. www.bsip.res.in

COURSE TITLE: CELL BIOLOGY AND BIOMOLECULES (THEORY)

W.e.f. July 2022

COURSE CODE: BOT-I.C-2

MARKS: 100 (75 Theory+ 25 Practicals)

CREDITS: 4 (3 Theory+ 1 Practical) COURSE

DURATION: 45 HOURS

PREREQUISITE COURSES: Biology at XIIth preferred.

COURSE OBJECTIVES:

This course will provide a detailed discussion on a wide range of topics in Cell biology & Bio- molecules emphasizing experimental approaches and key experiments that have provided important insights. The course is aimed at conveying an understanding of how cellular structure and function arise as a result of the properties of cellular macromolecules. Emphasis will be on the dynamic nature of cellular organization, structure and function.

COURSE OUTCOME:

Upon successful completion of the course, students will be able:

CO 1: Recognise, classify cell, explain cell theory, evolution and biogenesis

CO 2: Define, describe, classify and explain cytoskeleton, cell organelle, biomolecules.

CO 3: Define, describe, compare, explain, illustrate cell wall and plasma membrane

CO 4: Predict and interpret the importance of cell

Sr. No	TOPICS	Hours
Module	I: Introduction to Cell, Ultra-structure and Function of	15
Cell Wa	all and Plasma Membrane	
1.1	Discovery and basic properties of cells	
	Prokaryotic and Eukaryotic cell; Cell theory	
1.2	Cell evolution and biogenesis	
1.3	Structure and functions of cytoskeleton;	
	Structure and function of Microtubule, Intermediate filaments,	
1.4	Microfilaments	
1.5	Structure and function of cell wall; Chemical composition of cell wall;	
1.6	Extracellular matrix and cell interactions; Gap -Junctions & plasmodesmata	
1.7	Structure and function of plasma membrane; Active and Passive transport of solute (channels & pumps); Cell signaling- molecules	
	and receptors, signaling network.	

Module II: Study of Cell Organelles		15	
2.1	Semiautonomy and gene control;		
	Structure & functions of peroxisome, glyoxysome &		
2.2	lysosomes		
	Nucleus and its Organization; Nuclear envelope, nuclear pore co	omplex	
	Nuclear matrix, Chromosomes and chromatin structure		
2.3			
	Structure and function of ribosome		
2.4			
	Endomembrane systems- Endoplasmic reticulum and Golgi con	nplex	
2.5			
	III: BIOCHEMISTRY OF AMINO ACIDS AND PROTEINS		15
CARBO	PHYDRATES, LIPIDS		
3.1	Definition & importance of biomolecules; types of bonds in		
	bio-		
	molecules; pH and buffers; Water as a biological solvent		
3.2	Classification and biological functions of carbohydrates and lipi		
3.3	Classification and biological functions of amino acids and protein		
	'	Total	45

COURSE TITLE: CELL BIOLOGY & BIOMOLECULES

(PRACTICAL) COURSE CODE: BOT-I.C-2

MARKS: 25 CREDITS: 1

PRACTICAL SESSIONS: 15

Sr.No	MODULE IV: TOPICS	PRACTI CAL SESSIONS
1.	Study of cell structure in <i>Hydrilla</i> and <i>Tradescantia</i> staminal hairs	1
2.	Examination of prokaryotic cell, eukaryotic cell and cell organelles by EM graphs	1
3.	Preparation of temporary slides to observe different types of cells	2
4.	Staining and Preparation of slides	6
	Cytochemical staining of Nucleus- Acetocarmine	
	Cytochemical staining of polysaccharides- Periodic Acid Schiff's	
	(PAS)	
	Cytochemical staining of Mitochondria – Jannis Green Cytochemical staining of Total proteins – Bromophenol blue Cytochemical staining of Histones – Fast Green	
5.	Determination of pH (of plant extracts) using pH meter	1
6.	Quantitative determination of carbohydrates (Anthrone reagent)	1
7.	Estimation of oil in fatty seeds using (Soxhlet apparatus)	2
8.	Estimation of proteins (Lowry's Method)	1
	Total	15

REFERENCES:

- 1. David L. Nelson.& Michael M. Cox. (2013). *Lehninger Principles of Biochemistry*, 4th ed. New York: W.H. Freeman & Co.
- 2. Donald Voet., Judith G. Voet and Charlotte W. Pratt. (2002). *Fundamentals o fBiochemistry*, 2nd edition, John Wiley and Sons Pvt Ltd.
- 3. Gupta, P.K. (1999). *A Text-book of Cell and Molecular Biology*. Meerut, India: Rastogi Publications.
- 4. Robert A. Horton. (2006). *Principles of Biochemistry*. 4th ed. Pearson Prentice Hall.
- 5. Jeremy M. Berg, John L. Tymoczko and LubertStryer.(2002). *Biochemistry* 5th edition,
 - , New York; W.H.Freeman & Company
- 6. Karp, G. (1999). *Cell and molecular Biology, Concepts and experiments* . 2nd edition. USA: John Wiley and Sons Inc.
- 7. Paul Flinch (1999). Carbohydrates structure, Synthesis & Dynamics.

- The Netherlands: Kluwer Academic Pub.
- 8. U. Satyanarayana and U. Chakrapani. (2000). *Biochemistry*, 4thedition., Kolkata: Elsevier Pub.
- 9. Verma P.S. and Agarwal V. K. (1998). *Cell Biology, Genetics, Molecular Biology, Evolution and ecology.* 14th Ed. New Delhi: S Chand Publishers.
- 10. Randall J. Weselake Email author Stacy D. SingerGuanqun Chen. (2018, July 19). *Introduction to Plant Biomolecules and Cellular Metabolism*. Retrieved Februaury 13, 2020, from Springer: https://link.springer.com/chapter/10.1007/978-1-4939-8616-3_2
- 11. (2013, November 11). Retrieved February 13, 2020, from NPTEL: https://nptel.ac.in/courses/102103012/
- 12. *BIOLOGY JUNCTION*. (2017, April 21). Retrieved February 13, 2020, from Structure & Function of the Cells: https://www.biologyjunction.com/cell++notes+bi.html.

Web References:

- 1. www.britannica.com
- 2. https://www.springer.com
- 3. https://www.biologydiscussion.com
- 4. <u>www.cellbiologyjournal.org</u>
- 5. www.academia.edu

COURSE TITLE: PLANT ANATOMY AND EMBRYOLOGY (THEORY)

COURSE CODE: BOT-II. C-3

MARKS: 100 (75 Theory+ 25 Practicals)

CREDITS: 4 (3 Theory+ 1 Practical)

COURSE DURATION: 45 HOURS

COURSE OBJECTIVE:

This paper deals to understand the plant anatomy and embryology of angiospermic plant. Importance of studying this paper is highlighted reflecting on the current changing needs of the students by providing latest information. Practical component will provide an ample understanding of anatomical and embryological features.

COURSE OUTCOME: Students will be able to:

CO1: Define, describe and explain the basic plant anatomical and embryological features

CO 2: Compare the interrelatedness of organ-systems and their functions

CO 3: Examine the features through histological techniques.

CO 4: Define, describe, explain, and compare theories in organization of tissues

Sr.No.	TOPICS	Hours
	MODULE I: SHOOT, ROOT AND LEAF ANATOMY	15
1.1	Organization of Shoot apical meristem	
1.2	Apical cell theory, Histogen theory, Tunica-Corpus theory, Cyto-	
	histological zonation.	
1.3	Organization of root apical meristem	
1.4	Korper-Kappe theory, Quiescent centre.	
1.5	Anatomy of leaf: epidermis, mesophyll and vascular tissue	
1.6	Stomata and its diversity, leaf abscission	
	MODULE II: WOOD STRUCTURE	15
2.1	Vascular cambium, Secondary xylem, Xylary elements	
2.2	Secondary phloem, Phloem elements and Periderm	
2.3	Conifer wood, Dicotyledon wood, wood anatomy-TS, TLS, RLS.	

	Module III: Reproductive biology, Pollination and fertilization	15
3.1	Floral development: ABC model of flowering	
3.2	Structure and development of male gametophyte- Microsporangium	
	Microsporogenesis& Pollen grains	
3.3	Structure and development female gametophyte – Megasporangium,	
	Megasporogenesis, Forms of ovule-Monosporic, bisporic and	
	Tetrasporic	
3.4	Mechanism of pollination and fertilization- types of pollination,	
	germination of pollen grain, pollen pistil interaction, self-	
	incompatibility	
3.5	Double fertilization, embryo (dicot and monocot) and endosperm	
	formation. General account of Apomixis and Polyembryony	
	TOTAL	45

COURSE CODE: BOT-II.C-3

MARKS: 25 CREDITS: 1

COURSE DURATION: 15 SESSIONS

Sr.No.	Module 4: TOPICS	PRACTICAL
1.	Study of simple and complex tissues by using permanent slides/ EM	2
	graphs.	
2.	Microscopic study of wood tissues in T.S, T.L.S. and R.L.S.	3
	(Permanent slides) and maceration (Any one species)	
3.	Study of Meristems, Microsporogenesis and Megasporogenesis	2
	through permanent slides	
4.	Mini Project- Study of diversity in leaf anatomy, stomata and female	3
	gametophyte exhibiting self-incompatibility.	
5.	Embryo and Endosperm with haustoria mounting (Tridax/ Cucurbit).	2
6.	In vitro growth of pollen tube in <i>Portulaca/Vinca</i> .	1
7.	Pollen studies: Chitaley's method for analysis in Ipomoea, Ocimum,	2
	Hibiscus, Acacia auriculiformis and Grass.	
	TOTAL	15

REFERENCES: -

- 1. Bhojwani, S. S and Bhatnagar, S.P. (2009). *The Embryology of Angiosperms*, New Delhi: Vikas Publishing House Pvt. Ltd.,
- 2. Dwivedi. J.N. (1988). Embryology of Angiosperms. Meerut: Rastogi and Co.
- 3. Esau, K. (1977). *Plant Anatomy*, ^{2nd} Edition. New Delhi: Wiley Eastern Private Limited.

- 4. Fahn, A. (1982). Plant Anatomy (3rd edition). Oxford: Pergoman Press.
- 5. Mauselth, J.D. (1988). *Plant Anatomy*. California, USA: The Benjamin Cummings Publishing Co. Inc.
- 6. Maheswari, P. (1971). *An Introduction to the Embryology of Angiosperms*. New Delhi: Tata McGrawhill.
- 7. Pandey, B.P. (1981). A textbook of Botany Angiosperms. New Delhi: S. Chand and Co.
- 8. Pandey, B.P. (1978). Plant Anatomy. New Delhi: S Chand and Co.,

Weblinks:

 $1.\ http://virtualplant.ru.ac.za/Main/ANATOMY/prac9.htm\\ 2.\ http://www.biologydiscussion.com/plants/wood-anatomy-of-some-important-plants-biology/57016$

COURSE TITLE: MICROBIOLOGY

(THEORY) COURSE CODE: BOT.II.C-4

MARKS: 100 (75 Theory+ 25 Practicals)

CREDITS: 4 (3 Theory+ 1 Practical)

COURSE DURATION: 45 HOURS

The objective of this course is to familiarize the student with basic concepts that help in understanding of microbial world. The course is aimed to understand microbial survival and distribution, its relation and interaction with environment and human beings. The laboratory exercises are designed so that students acquire basic and bacteriological skills and are able to successfully use them.

COURSE OUTCOME: Upon successful completion of the course, students will be able to:

- CO1 : Appraise the students to the fundamental basis of all living organisms (Plant and Microbes)
- CO2: Relate interaction of microbes with plant and the environment.
- CO3: Describe, demonstrate and Assess methods of microbial preparation.
- CO4: Understand applications of the microbes in food, agriculture and industry with sustainable usage of resources for the benefit and human survival.

Sr.No.	TOPICS	Hours
Module	I: Overview of microbial world & development	15
1.1	Developments of microbiology in the twentieth century Microbial taxonomy & phylogeny (archea, bacteria, fungi, algae, protozoa)	
1.2	Structure & General characteristics of viruses, viroids, Prions, Bacteriophages, TMV & mycoplasma, satellite viruses.	
1.3	Distribution of microbes in the environment (air, soil & water) Scope of microbiology and Microbial diseases	

Mod	ule 2: Isolation, characterization, growth of microorganisms & microbial genetics	15
2.1	Control of microbial growth: Biochemical characterization & nutritional types;	
	Sterilization techniques,	
2.2	Preparation of pure cultures; growth factors & growth curve.	
2.3	Staining techniques	
2.4	Bacterial Reproduction: Conjugation, Transformation & transduction;	
2.5	Methods of viral replication (Lytic & Lysogenic mode)	
√lodule	2 3: Application Microbiology	15
3.1	Applications in Environment: Applications of microbes in environment	
	sustenance (microbial degradation of cellulose, hemicelluloses, lignin,	
	biodegradation of hydrocarbons),	
3.2	Applications in Agriculture: Association of plants with cyanobacteria,	
	actinomycetes, fungus; Xenobiotics (biodegradation of pesticides,	
	herbicides, metals) biofuels	
3.3	Applications in Medicine: Microbial antibiotics	
3.4	Applications in Industry: Microbes in Fermentation technology & dairy	
	industry, bioreactors, UASB reactor and tricking filters for waste water	
	treatment	
	TOTAL	45

COURSE TITLE: MICROBIOLOGY (PRACTICAL)

COURSE CODE: BOT-II.C-4

MARKS: 25 CREDITS: 1

COURSE DURATION: 15 SESSIONS

Sr.No.	Topics	Practical
		Sessions
1	Preparation of culture media for bacteria, pure cultures and aseptic	3
	transfer of pure culture	
2	Staining of microorganisms (Gram staining)	
		2
3	Measurement of bacterial growth, cell number in a culture (Turbidity,	3
	serial dilution & Haemocytometer	
4.	Distribution of microorganisms in our environment (Skin, air, water	
	and soil sample)	2
5	Mini Projects:	5
	i) Microbiological examination of water	
	ii) Bacteriological testing of milk	
	iii) Fermentation of carbohydrates and wine preparation	
	TOTAL	15

REFERENCES:

- Aneja, K. R. (2007). Experiments in Microbiology Plant Pathology & Biotechnology. 5th ed. New Age International Publishers.
- 2. Atlas, R. M. (1997). *Principles of Microbiology*. 2nd ed. McGraw-Hill
- 3. Dubey, R.C & Maheshwari, D.K. (2002). *Practical Microbiology*. New Delhi: S. Chand & Company Ltd.
- 4. Frazier, W.C. and Westhoff, D.C. (2008). Food Microbiology. 4th ed. McGraw Hill.
- 5. Pelczar, M. (2000). *Microbiology*. 5th ed. Tata-McGraw Hill.
- 6. Powar, C. B. & Daginawala, H.F. (1982). *General Microbiology*–Volume II. Mumbai: Himalaya publishing house.
- 7. Prescott, H. (2008). *Microbiology*. Boston: McGraw-Hill Higher Education.
- 8. Prescott, L. M. (2005). *Microbiology*. 6th ed. McGraw-Hill.

9. Salle, A. J. (1999). Fundamental Principles of Bacteriology. 7th ed. Tata- McGraw Hill.

10. Shivkumar, P. K., Joe, M. M. & Sukesh, K. (2010). *An Introduction to Industrial Microbiology*. 1st ed. New Delhi: S. Chand & Company Pvt. Ltd.

COURSE TITLE: PHYSIOLOGY OF PLANTS (THEORY) W.e.f. July 2022

COURSE CODE:

BOT.III.C-5

MARKS: 100 (75Theory +25 Practical)

CREDITS: 4 (3 Theory +1 Practical) COURSE

DURATION: 45 HOURS

PREREQUISITE COURSES: Biology at XIIth preferred.

COURSE OBJECTIVE:

Relate physiological mechanism of plants and their functioning.

Analyze biosynthesis of valuable plant metabolites (primary/ secondary) and their role.

COURSE OUTCOME:

Upon successful completion of the course, students will be able to:

CO1: Analyse Physiological processes operational in the plants.

CO2: Formulate and design experiments to explain physiological concepts and interpret data.

CO3: Estimate and evaluate methods of quantitation of pigments, enzymes and metabolites.

CO4: Describe and verify physiological processes through mini projects.

Sr	UNITS, TOPICS AND SUB-TOPICS	Hours
N		
0		
	MODULE -I: PLANT WATER RELATIONS	15
	AND SOLUTE TRANSPORT	
1.1	Water and its significance to plants	
1.2	Osmotic & water potential of cell	
1.3	Transpiration, stomatal regulation & anti-transpirants	
1.4	Uptake, transport and translocation of water	
1.5	Essentiality of mineral nutrition and its uptake (active, passive and	
	its role on membranes)	
1.6	Transport of organic solutes (source sink relationship)	
	MODULE II: PHOTOSYNTHESIS	15
	AND STRESS PHYSIOLOGY	
2.1	Chloroplast and Light harvesting complexes	
2.2	Z scheme of photosynthesis & Mechanisms of electron transport	
2.3	CO2 fixation (C3, C4 and CAM pathways)	
2.4	Photoprotective mechanisms (photorespiration)	
2.5	Environmental change and its impact on photosynthesis	

	Responses of plants to abiotic (water, temperature and salt)	
	MODULE III: PLANT GROWTH AND DEVELOPMENT AND SECONDARY METABOLITES	15
3.1	Role of phytochromes & cryptochromes and its functions	
3.2	Plant hormones, transport and physiological functions	
3.3	Photoperiodism & vernalization.	
3.4	Senescence, seed dormancy & germination	
3.5	Biosynthetic pathway of terpenes, phenols and alkaloids and their Functions	
	TOTAL	45

COURSE TITLE: PHYSIOLOGY OF PLANTS (PRACTICALS) COURSE CODE: BOT.III.C-5

MARKS: 25 CREDITS: 1

PRACTICAL SESSION: 15 (Inclusive of 3 PA)

Sr. No	TOPICS	PRACTI CAL SESSION S
1	Determination of osmotic potential of plant cell sap by plasmolytic method.	2
2	Determine water potential of given tissue by falling drop/tissue weight method	2
3.	Chromatographic separation of plant pigments and plant sugars by paper chromatography	3
4	Quantitation of total free amino acids	2
5	Mini Project: 1. Mineral deficiency symptoms in plants 2. Secondary metabolites in plants. 3. Oxygen evolution during photosynthesis. 4. Role of Plant hormones in plant growth 5. Starch production during photosynthesis 6. Use of hydroponic technique for plant growth	6
		15

REFERENCES:

- 1. Harvey J.M. Hou, Najafpour, M. Mahdi., Moore, G. F., Allakhverdiev S. I. (2017) *Photosynthesis: Structures, Mechanisms, and Applications*. NY: Springer Publications.
- 2. Jordan Smith (2016) *Plant and Crop Physiology*. Syrawood Publishing House.
- 3. Taiz, Lincoln., Zeiger, Eduardo., Møller, I. Max and Murphy Angus (2018) *Fundamentals of Plant Physiology*. UK: Oxford University Press.
- 4. Taiz Lincoln and Zeiger, Eduardo (2015). Plant Physiology and Development. U.S: Sinauer Associates Inc.
- 5. Ray Noggle G and Fritz George J. (2010) Introductory Plant Physiology. Prentice Hall.
- 6. Taiz, L. and Zeiger, E. (2006). *Plant Physiology*, 4th edition, MA, USA: Sinauer Associates Inc. Salisbury F. B. and Ross C. W. (2002). Plant Physiology 3rd edition. CBS publishers and distributers.
- 7. Goodwin Y.W., and Mercer E.I. (2003) Introduction to Plant Biochemistry. 2nd edition CBS Publishers and distributors.
- 8. Moore T.C. (1989). *Biochemistry and Physiology of Plant Hormones*. New York, USA: Springer Verlag,
- 9. Singhal G.S., Renger G., Sopory, S.K., Irrgang K.D and Govindjee (1999). *Concept in Photobiology; Photosynthesis and Photomorphogenesis.*, New Delhi: Narosa Publishing House.
- 10. Hopkins, W.G. and Huner, P.A. (2008) Introduction to Plant Physiology. John Wiley and Sons.
- 11. Nelson, D.I. and Cox M. M. (2000). *Lehninger. Principles of biochemistry*, 3rdedition, U.K: Macmillan.
- 12. Plummer D. T. (1985). *An introduction to Practical Biochemistry* 2nd edition. Tata Mcgraw Hill Publishing company Ltd.

CURRENT LITERATURE (JOURNAL ARTICLES):

Plant Physiology, The Plant Cell, Journal of Plant Physiology, Physiologia Plantarum, Plant Physiology and Biochemistry, Postharvest Biology and Technology, Journal of the American Society for Horticultural Science, Nature, Scientific American and Science reporter.

Weblinks:

- 1. http://www.nrce.niepa.ac.in > ... > Life Science
- 2. http://exa.unne.edu.ar biologia > fisiologia.vegetal
- 3. https://www.springer.com > journa
- 4. https://www.ncbi.nlm.nih.gov pmc > journals
- 5. https://www.biologydiscussion.com/plant-physiology-2/notes-plant-physiology/34597

COURSE TITLE: ECOLOGY AND CONSERVATION (THEORY) W.e.f. July

2022

COURSE CODE: BOT-III.E-1

MARKS: 100 (75 Theory+ 25 Practical) CREDITS: 4 (3 Theory+ 1 Practical)

DURATION: 45 HOURS

PREREQUISITE COURSES: Biology at XIIth preferred.

COURSE OBJECTIVES:

Objective of this paper is to provide introductory knowledge on biotic and abiotic environmental factors, pollution and phytogeography with regards to Government regulations towards environmental management with respect to agriculture and food security.

COURSE OUTCOMES:

Upon successful completion of the course, students will be to:

CO1: Discuss, explain and review the concept of ecosystem, phytogeography and population ecology.

CO2: Analyze and evaluate the pollution scenario of the area and relate the theory in the natural environment and work towards conservation of the environment and its legalities.

CO3: Quantitatively estimate the oxygen and Carbon dioxide from different water samples.

CO4: Evaluate and determine minimum area of sampling unit (using quadrant) for the study of local vegetation.

Sr.No.	UNITS, TOPICS AND SUB-TOPICS	HOU RS
	e 1: CONCEPT OF ECOSYSTEM, PHYTOGEOGRAPHY OPULATION ECOLOGY	15
1.1	Concept of Ecosystem, Ecological adaptations of plants belonging to following ecological groups: Hydrophytes, Xerophytes and Halophytes. Shelford's law of tolerance; Introduction to Species diversity indices (Simpson's & Shannon-Weiner) of herbaceous vegetation.	
1.2	Phytogeography- plant distribution, theories on plant distribution Endemism, Biomes of the world, and phytogeographical regions ofIndia, biosphere reserves, Forest training institutes, Land bridge theory	
1.3	Population Ecology: Survivorship curves- Type I, Type II, Type III. Population growth: Population growth curves – Carrying capacity K, Exponential growth (J shaped curve) and Logistic growth (S shaped curve).	
	DDULE II: ECOLOGICAL FACTORSAND COMMUNITY LATIONSHIPS	15
2.1	Light - quality, duration, absorption, intensity & effects on plants	

	Temperature-variation due to altitude effects on plants, thermal constant	
	and stratification	
2.2	Water- precipitation, moisture & measurement of rainfall Wind - speed,	
2.3	advantages and damage caused to plants	
2.4	Soil- Soil profile, texture, classification and organic matter	
	Community relationships:Biotic interactions, Gaia Hypothesis, Introduction	
	to Optimal foraging theory	
MODU	LE III: POLLUTION,LAWS AND ORGANISATIONS	15
3.1	Air pollution- polluting gases; ozone depletion, greenhouse effect, global warming, acid rain and smog	
3.2	Water pollution-eutrophication, sewage, industrial waste, heavy metal pollution	
3.3	Soil pollution – chemical pollutants	
3.4	Bioremediation	
3.5	Forest conservation act, Indian forest act, Biodiversity act, western	
	Ghat protection act, Kasthurirangan Act, Gadgil committee report, Mining committee reports, wild life act (recent acts to be studied).	
3.6	Organizations (National & International) working for conservation	
	(NEERI, TERI, MSSRF, IUCN, TRAFFIC) TOTAL	45
	IOTAL	43

COURSE TITLE: ECOLOGY AND CONSERVATION

(PRACTICAL) COURSE CODE: BOT- III.E-1

MARKS: 25 CREDITS: 1

PRACTICAL SESSIONS: 15

Sr	Module IV- Topics	Practic
•		al
N		Session
0		s
1.	Study of ecological instruments i.e. lux meter, rain	02
	guage, hygrometer, wet and dry bulb thermometer,	
	maximum and	
	minimum thermometer	
2.	To study the physical and chemical characters (moisture,	02
	texture	
	and pH) of Sand, Loam and Clay.	
3.	Analysis of different water samples for oxygen and carbon-	03
	dioxide content	
4.	Estimation of total carbonates from soil sample	01
5.	Visual interpretation of remotely sensed image for vegetation	01
	types (Land use land cover, NDVI)	
6.	Anatomical study of Hydrophytes (leaf - Eichhornia),	01
	Xerophytes (succulents - Opuntia), and Halophytes (leaf -	
	Avicennia)	
7.	Mini project: To determine minimum area of sampling unit	05
	(quadrat) for the study of local community and to determine	
	species diversity index (Simpson's & Shannon-	
	Weiner) of herbaceous vegetation	
Total		15

REFERENCES:

- 1. Ambasht, R.S. (1988), A Text Book of Plant Ecology. Varanasi: Students Friends Co.
- 2. P. D. Sharma (2004), Ecology and environment. 7th edition, Meerut: Rastogi publications.
- 3. Jogdand, SN, (1995), *Environmental Biotechnology*. Mumbai: Himalaya Publishing House,
- 4. Sharma B. K., (2001). *Environmental chemistry*. Sixth revised edition. Meerut: Goel publication house.

- 5. Day A. K., (2002). *Environmental Chemistry*. Fourth Edition. New Delhi:New Age International Publishers.
- 6. Santra S.C., (2017). Environmental Science. New Delhi: New Central Agency.
- 7. Odum E.P. and Barret G.W., (2004) *Fundamental of Ecology*. Fifth edition, Brooks/Cole Publishers.
- 8. Moore, P.W. and Chapman, S.B. (1986). *Methods in Plant Ecology*. Blackwell Scientific Publications.
- 9. Piper, C.S. (1950). Soil and Plant Analysis. Australia: University of Adelaide,
- 10. Sharma, P.D. (2017). *Ecology and Environment*. 13th edition. ,Meerut. Rastogi Publishers.
- 11. Subrahmanyam, N.S.;Sambamurty, A.V.S.S. (2006); *Ecology*; 2nd edition; New Delhi: Narosa Publishing House.
- 12. Sangodkar U.M.X and Masur Patil Uma (2018). *Fundamentals in Environmental Biotechnology*, 1st Edition, CinnamonTeal Publishers.

Web References:

- 1. Science Direct:https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/carrying-capacity.
- 2. World Wide Fund India :https://www.wwfindia.org/
- 3. NEERI: https://www.neeri.res.in/
- 4. TRAFFIC:https://www.worldwildlife.org/initiatives/traffic-the-wildlife-trade-monitoring- network
- 5. International Union for conservation of nature: https://www.iucn.org/
- 6. MSSRF- https://www.mssrf.org/
- 7. TERI-https://www.teriin.org/

COURSE TITLE: SYSTEMATICS OF FLOWERING PLANTS AND

PHYLOGENY W.e.f. July 2022 COURSE CODE: BOT- III.E-2

MARKS: 100 (75 Theory + 25 Practical) CREDITS: 4 (3 Theory +1 Practical

DURATION: 45 HOURS

PREREQUISITE COURSES: Biology at XIIth preferred.

COURSE OBJECTIVES:

To study the morphology, systematics and phylogeny of flowering plants.

COURSE OUTCOMES:

Upon successful completion of the course, students will be able to:

CO1: Understand the process of Plant Classification, documentation and nomenclature in Plant Systematics. .

CO2: Explain, examine the concept of taxonomic evidences and phylogeny of angiosperms..

CO3: Understand, explain, analyze and interpret the systems of classification, features of families in Systematics of flowering plants.

CO4: Identify plants with help of Floras, taxonomic keys, prepare Herbarium and construct Cladograms.

	TOPICS	Hours
Modu	le 1: Introduction to Plant classification, Nomenclature	
1.1	Plant classification, nomenclature & biosystematics	15
1.2	Field inventory; Functions of Herbarium; Important herbaria and botanical gardens (India & world), virtual herbarium; e-flora	
1.3	Documentation: Flora, Monographs, Journals; Keys: Single access and Multi-access	
1.5	Principles and rules (ICBN); Ranks and names; Typification, author citation, valid publication Rejection of names, principle of priority and its	
	limitations; Names of hybrids	
	le 2: Concept, Taxonomic evidences and Phylogeny of	15
Angio	sperms	

2.1		15
	Concept of taxa (family, genus, species); Categories and	hours
	taxonomic hierarchy; species concept (taxonomic, biological,	
	evolutionary).	
2.2	Evidence from palynology, cytology, phytochemistry and	
	molecular data.	
	Origin & evolution of angiosperms, Co-evolution of	
2.3	angiosperms. Characters; Variations; OTUs, cluster analysis,	
	Phenograms, cladograms (definitions and differences)	
	Thenograms, cracograms (definitions and differences)	
Mo	dule 3: Systems of classification; position and diagnostic features	15
of	, , , , , , , , , , , , , , , , , , ,	
	Families	
3.1	Concepts of evolution and phylogeny	
3.1	concepts of evolution and phylogeny	
3.2	Major contributions by Linnaeus, Bentham and Hooker, Engler	
	and Prantl; Brief reference of Angiosperm Phylogeny group	
	(APG III) Classification.	
3.3	Annonaceae, Capparaceae, Brassicaceae, Grewiaceae, Rutaceae,	
	Myrtaceae, Cucurbitaceae, Rubiaceae, Apocyanaceae -	
	Asclepiadaceae (sub-family), Solanaceae, Verbenaceae,	
	Lamiaceae, Amaranthaceae, Orchidaceae, Araceae, Asteraceae,	
	Zingiberaceae, Commelinaceae, Poaceae.	
	Total:	45

COURSE TITLE: SYSTEMATICS OF FLOWERING PLANTS AND PHYLOGENY COURSE CODE: BOT-III.E-2

MARKS: 25

CREDITS: 3

Sr.no	Module 4:	Practical
	Topics	
1	Plant identification using flora book and database	01
2	Identification of 15 families mentioned in unit IV (Bentham & Hooker's system) studied in theory from locally available specimens (with floral diagram).	10
3	Use of taxonomic keys and construction of dichotomous keys	01
5	Taxonomic interpretation using pollen of related species	01
6	Construction of Phenogram and Cladogram	01
	Mini project: Preparation of herbarium	01
	Total	15

REFERENCES:

- 1. Singh, G. (1999). *Plant Systematics*: Theory and Practice. New Delhi: Oxford & IBH Pvt. Ltd.
- 2. Chopra, G. L. (1985). *Angiosperm (Systematics & Life cycles)*. Jaladhar, India: Pradeep Publications, pp.339-350.
- 3. Pandey, B. P. (1969). *Taxonomy of Angiosperms*. New Delhi: S. Chand and company Ltd, India, pp.102-105.
- 4. Subrahmanyam N S (1995). *Modern plant taxonomy*, Vikas publishing house pvt. Ltd.
- 5. Pandey S.N. (2008). *Taxonomy of angiosperms*, New Delhi: ASE books India.
- 6. Mondal, A.K. (2009). Advanced Plant Taxonomy, New Delhi: New Central Book Agency Ltd.
- 7. Naik, V.N. (1984). Taxonomy of Angiosperms. New Delhi: Tata McGraw Hill.
- 8. Radford, A.E. (1986). Fundamentals of Plant Systematics. New York: Harper and Row.
- 9. Davis, P.H. and Heywood, V.H. (1963). *Principles of Angiosperm Taxonomy*. London: Oliver and Boyd.
- 10. Heywood, V.H. and Moore, D.M. (1984). *Current Concepts in Plant Taxonomy*. London: Academic Press.

COURSE TITLE: ENZYMES AND THEIR METABOLIC PATHWAYS

(THEORY) W.e.f. July 2022

COURSE CODE: BOT-III. E-3

MARKS: 100 (75 Theory+ 25 Practicals)

CREDITS: 4 (3 Theory+ 1 Practical) COURSE

DURATION: 45 HOURS

PREREQUISITE COURSES: Biology at XIIth preferred.

COURSE OBJECTIVES:

The objective of this course is to understand the importance and mechanisms of enzyme action. The course also discusses enzymatic regulation & metabolic control of biochemical reactions.

COURSE OUTCOMES:

Upon successful completion, the students will be able to:

CO1: Identify the role of enzymes in various biological processes

CO2: Classify the different enzymes based on its structure and

function

CO3: Understand and extrapolate the various mechanisms of

enzyme action

CO4: Study application of enzymes in industry

Sr.No	UNITS, TOPICS AND SUB-TOPICS	Hour
M	ODULE I: BASIC CONCEPT AND CATALYSIS OF ENZYMES	15
1.1	Classifications & nomenclature (IUB system).	
1.2	Biological role of enzymes; Concept of holoenzymes, apoenzymes,	
	prosthetic group, iso-enzymes, allosteric enzymes and Active sites.	
1.3	Chemical nature of enzymes, Enzyme activity. Characteristics of enzymes (Physico-chemical and biological properties).	
1.4	Role of co-factors (NAD, NADP+, FMN/FAD, Co-enzyme A, Pyridoxyl phosphate and metal ions).	
	MODULE II: ENZYME KINETICS	15
2.1	Factors affecting enzyme activity (concentration, substrate, pH,	
	temperature, inhibitors).	
2.2	Michaelis-Menten equation and its significance.	
2.3	Fisher's lock and key model and Koschland (induced fit theory), Arrhenius plot.	

2.4	Enzyme action (competitive, noncompetitive and reversible)	
	MODULE III: METABOLIC CONCEPTS OF ENZYMES	15
3.1	Glycolysis, Fate of pyruvate (Lactic acid & alcohol fermentation).	
3.2	Citric acid cycle, Respiratory substrate, Mitochondrial Electron transport, Cytochrome, Alternate oxidase pathway, Glycogen cycle.	
3.3	Biosynthesis and degradation of triglycerides.	
3.4	Pathway for amino acid catabolism (Nitrogenase enzyme complex, NIF and Nod genes).	
	TOTAL	45

COURSE TITLE: ENZYMES AND METABOLIC PATHWAYS

(PRACTICALS) COURSE CODE: BOT-III.E-3

MARKS: 25 MARKS

CREDITS: 1

COURSE DURATION: 15 SESSIONS

Sr. No	TOPICS	PRACTICAL
		SESSIONS
1	Qualitative and quantitative determination for amylase	3
	enzyme in the given plant samples.	
2	Effect of enzyme concentration, temperature, substrate,	5
	inhibitors and	
	pH on the activity of α-amylases	
3	To extract and determine the activity of catalase, lipase and	3
	peroxidase enzymes	
4	a. Mini project on role of Nitrogen in plants	4
	b. Application of enzymes in industries (dairy/	
	pharmaceuticals/ sugar/ waste management/ food/	
	wine)	
	c. Anaerobic respiration in germinating seeds.	
	TOTAL	15

REFERENCES:

- 1. Bennett, T. P. and Frieden E. (1969). *Modern Topics in Biochemistry*. pg. 43-45.London: Macmillan.
- 2. Breaker, Ronald R. (2000). Making Catalytic DNAs. Science 290: 2095–2096.
- 3. Campbell, N. A., Jane B. R., and Mitchell L. G. (1999). *Biology*, 5th ed. Menlo Park, CA: Benjamin/Cummings.
- 4. Deeth, R. J. (1997). Chemical Choreography. New Scientist 155: 24–27.
- 5. Harrow, B. and Mazur, A. (1958). Textbook of Biochemistry. 109, Philadelphia: Saunders
- 6. Holum, J. (1968). Elements of General and Biological Chemistry, (2nd ed.) 377. New York: Wiley.
- 7. Koshland, D. E. (1973). Protein Shape and Biological Control. *Scientific American* 229: 52–64.
- 8. Madigan, M. R., and Marrs B. L. (1997). Extremophiles. Scientific American 276: 82–87.
- 9. Pfeiffer, J. (1954). *Enzymes, the Physics and Chemistry of Life*. pg 171-173. New York: Simon and Schuster.
- 10. Price C. N., Lewis S. (1999). Fundamentals of Enzymology. UK: Oxford University Press.
- 11. Berg, J. M., Tymoczko, J. L., Gatto Jr., G. J., & Stryer, L. (2019). *Biochemistry* (9 ed.). New York: WH Freeman.
- 12. Palmer, T., & Bonner, P. L. (2007). *Enzymes Biochemistry, Biotechnology, Clinical Chemistry* (2 ed.). Cambridge: Woodhead Publishing.
- 13. Voet, D., & Voet, J. (2010). *Biochemistry* (4 ed.). New Jersey: John Wiley & Sons, Inc.
- 14. Devasena, T. (2010). *Enzymology*. England: Oxford University Press.
- 15. Satyanarayana, U. & Chakrapani, U. (2020). Biochemistry (5 ed.). Chennai: Elsevier.
- 16. Jain, J. L., Jain, S. & Jain, N. (2016). *Fundamentals of biochemistry*. New Delhi: S. Chand Pvt. Ltd.
- 17. Rodwell, V., Bender, D., Botham, K., Kennelly, P. & Weil, P. A. (2018). Harper's illustrated biochemistry. USA: McGraw Hill Education.

Web References:

- 1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4692135/
- 2. https://www.imedpub.com/insights-in-enzyme-research/
- 3.<u>https://iopscience.iop.org/book/978-0-7503-1302-5/chapter/bk978-0-7503-1302-5chl</u>
- $4. \underline{https://www.biologydiscussion.com/enzymes/enzymes-meaning-mechanism-classification-factors-and-importance/17003}$
- 5. https://nptel.ac.in/courses/102102033

COURSE TITLE: HERBAL COSMETOLOGY (THEORY) W.e.f. July 2022

COURSE CODE: BOT-III.E-4

MARKS: 100 (75 Theory +25 Practical) CREDITS: 4 (3 Theory +1 Practical)

DURATION: 45 HOURS

PREREQUISITE COURSES: Biology at XIIth preferred.

COURSE OBJECTIVES:

To impart knowledge about the different plants that play a very important role in enriching inner health and skin quality.

COURSE OUTCOMES:

Upon successful completion of the course, students will be able:

- CO 1: Explain the basics of herbal cosmetology, skin, skin types.
- CO 2: Outline the requirements for making herbal soaps, oils, shampoos, face packs, etc.
- CO 3: Inculcate the technique of preparation of herbal products.
- CO 4: Identify and describe the herbs used for cosmetic products and understand the future prospects of Herbal cosmetic industry.

	TOPICS	Hours
Modu	lle I: Introduction to Herbal cosmetology	15
1.1	Definition, Collection and processing of herbal material,	
	Natural and artificial drying of herbal material	
1.2	Herbal remedies for holistic health	
1.0	Current status of Herbal Cosmetic Industry in India	
1.3	Introduction Herbal edible churnas beneficial for skin	
1.4	and hair Herbs used in weight loss and weight gain:	
	 Herbs for weight gain 	
	 Herbs for weight loss (For e.g. Ginseng, Cinnamon, 	
1.5	Black Pepper, Dandelion, Yashtimadhu,	
	Ashwagandha)	
1.6	Herbs that help in depression and anxiety Future	
Ì	prospects of herbal cosmetic Industry	

	e 2: Identification (botanical name and family), description and tion of following plants with Cosmetic benefits & their cosmetic	15
2.1	i) Curcuma longa	
	ii) Aloe vera	
	iii)Azadirachta	
	indica	
	iv) Ocimum sp.	
	v) Moringa sp.	
	vi) Cymbopogon flexuosus	
	vii) Murrayakoenigii	
	viii) Citrus limon	
	ix) Mentha sp.	
	x) Tagetes sp.	
	xi) Musa paradisica	
	xii) Rosa sp.	
	xiii) Manjistha	
Modul	e 3: Standardization of raw material and commonly used herbs in	15
the her	bal cosmetics	
3.1	Importance of standardization	
	Physical and chemical methods of standardization	
3.2	Quantitative and qualitative estimation of phyto-	
	constitutes Herbs used in the following cosmetic	
	product:	
3.3	 Herbal Shampoo(s) and soap(s) 	
	Herbal Conditioner	
2.4	Herbal Hair Dye/ Herbal Hair Oil/Hair Cream/Hair Gel,	
3.4	Herbal Face Mask	
	Herbal Bath Oil.	
	Study of protocol for preparation of :	
	• Different types of Herbal face masks- for dry skin, oily skin,	
	 pigmented skin & wrinkled skin 	
	Special Herbal masks for sensitive skin	
	Herbal Shampoo(s) and soap(s)	
	Total	45

COURSE TITLE: HERBAL COSMETOLOGY (PRACTICAL) COURSE CODE: BOT-III.E-4

MARKS: 25 CREDITS: 1

Sr. No.	Module 4- Topics	Practic al
1.	Herbal face masks for dry skin, oily skin, pigmented skin, wrinkled skin.	02
2.	Preparation of Herbal Shampoo(s) and soap(s)	02
3.	Preparation of herbal hair oils	01
4.	Comparison of Herbal products to non-herbal products	01
5.	Visit to an Ayurvedic institute / local ayurvedic clinic.	02
6.	Extraction of plant pigments- Lawsonia inermis (mehndi) and Curcuma longa (turmeric),	02
7.	 Mini project: Study of herbal products for weight loss and weight gain Study of various skin and hair care herbal products available in the market. Study of locally available herbal Churnas. Local Survey to know about awareness about home remedies for cosmetic purpose. 	05
	Total	15

REFERENCES:

- 1. Fuller, K.W. and Gallon, J.A. (1985). Plant Products and New Technology. New York: Clarendon Press.
- 2. Kocchar, S.L. (1998) Economic Botany in Tropics. New Delhi: Macmillan India Ltd.
- 3. Simpson, B.B. and Conner-Ogorzaly, M. (1986). Economic Botany- Plants in Our World. New Yok: McGraw Hill.
- 4. Sachs, M. (2014). Ayurvedic Beauty Care: Ageless Techniques to Invoke Natural Beauty. ISBN: 9788120818804
- 5. Sharma, O.P. (1998) Hill's Economic Botany. New Delhi: Tata McGraw Hill Publishing Company Ltd.

Web References:

1. https://www.biologydiscussion.com/herbal-drugs/modern-methods-of-herbal-

drugs-extraction/25348

- 2. www.santulan.in
- 3. www.pvayurveda.com
- 4. https://wjpr.s3.ap-south-1.amazonaws.com/article_issue/1522478937.pdf
- 5. https://www.planetayurveda.com/stholyantak-churna/

COURSE TITLE: CYTOGENETICS (THEORY)w.e.f 2021

COURSE CODE:BOT-IV.C-6

MARKS: 100 (75 Theory+ 25 Practicals)

CREDITS: 4 (3 Theory+ 1 Practical)

COURSE DURATION: 45 HOURS

COURSE OBJECTIVES:

This course will enable the students to understand fundamentals of genetics and evolution.

COURSE OUTCOMES: Students will be able to:

CO1: Restate, apply, analyze and access the fundamentals of genetics

CO 2: To discuss, explain and interpret extra nuclear inheritance, Sex linked inheritance and chromosomal aberrations.

CO 3: Identify different stages of cell division, to construct chromosome maps.

CO 4: Review the effects of mutagens on seed germination.

Sr.No.	TOPICS	HOURS	
Module	1: Mendelian Genetics and Linkage	15	
Mendel	Mendelian genetics and principles of inheritance and Multiple allelism		
1.1	Cell cycle- mitosis, meiosis and its significance, Mendel's Laws, backcross		
	and test cross.		
1.2	Allelic and non-allelic interactions, Epistatic interactions		
1.3	Multiple alleles in Drosophila (eye colour),		
	man (blood groups) and plants (self-incompatibility).		
Linkage	Linkage, Mutations and Molecular basis of mutations		
1.4	Linkage- Coupling and Repulsion Hypothesis		
	Chromosome maps.		
1.5	Mutations and its types. Types of mutagens.		
1.6	Transitions and transversions; frame shift mutations. DNA repair		
	mechanisms, Applications of mutations		

Module	e 2: Extranuclear inheritance and Sex linked inheritance	15
Extran	uclear inheritance and Maternal influence	
2.1	Extranuclear inheritance and maternal influence: Kappa particles in	
	Paramecium; CO ₂ sensitivity in Drosophila; cytoplasmic inheritance in	
	mitochondria and plastids; Shell coiling in snails; eye colour in flour moth.	
Sex Det	termination and Sex Linkage	
2.2	Sex Chromosomes, Mechanisms of sex determination; Genic balance	
	mechanism.	
2.3	Sex-linked inheritance- X linked and Y linked inheritance.	
Module	23: Genetic variation due to chromosome structure and number	15
Genetic	variation due to chromosome structure and number	
3.1	Chromosomal aberrations - duplications, deletions, inversions and	
	translocation	
3.2	Variations in chromosome number; auto-and allo-polyploidy - types and	
	effects; artificial induction of polyploidy. Auto and allo-polyploid crop	
	species Aneuploid segregations in plants- tetrasomics and nullisomics;	
	triploid and tetraploid plants. Applications of polyploidy	
	TOTAL	45 HOURS

COURSE TITLE: CYTOGENETICS (PRACTICAL)
COURSE CODE:BOT-IV.C-6

MARKS: 25

CREDITS: 1

COURSE DURATION: 15 SESSIONS

Sr. No	MODULE 4: TOPICS	Practical
1.	Study of Mitosis and meiosis using suitable plant material	03
2.	Karyotype analysis and preparation of ideogram	02
3.	Detection of anomalies in cell division using suitable plant material.	02
4.	Study of multiple allelism in blood groups of human beings.	01
5.	Effect of physical and chemical mutagen on seed germination	03
6.	Preparation of chromosome maps from 3-point test cross data and calculation of Interference and coincidence	01
7.	Induction of polyploidy using Colchicine treatment.	02
8.	Study of sex linked inheritance	01
	TOTAL	15 P

REFERENCES:

- 1. Gardner, E.J., Simmons, M.J. and Snustad, D.P. (1991). *Principles of Genetics* (8th edition). India: John Wiley & sons.
- 2. Gardner, Eldon J.; Snustad, Peter D.; (1984) *Principles of genetics* (7th edition). New York: John Wiley & Sons.
- 3. Griffiths, A.J.F., Wessler, S.R., Carroll, S. B. and Doebley, J. (2010) *Introduction to Genetic Analysis* (10th edition). USA: W. H. Freeman and Co.
- 4. Gupta, P.K. (1990) Genetics. New Delhi: RastogiPublications .
- 5. Gupta, P.K.; (2004) Cytogenetics (1st edition). Meerut: Rastogi Publications.
- 6. Gupta, P.K. (2007). *Genetics: A textbook for University students* (3rd edition) Meerut: Rastogi Publications.
- 7. Klug, W.S., Cummings, M.R. and Spencer, C.A. (2009). *Concepts of Genetics* (9 th edition). U.S.A.: Benjamin Cummings.
- 8. Pierce, B. (2008) Genetics: A Conceptual Approach (3rd Edition). Freeman & Co.
- 9. Russell, P. (2006) Genetics (2nd Edition). Noida: Pearson International.
- 10. Shukla, R.S. and Chandel, P.S.; (2007) Cytogenetics, Evolution, Biostatistics and Plant Breeding.
- 11. Snustad, D.P. and Simmons, M.J. (2010) *Principles of Genetics* (5th edition). NY: JohngWiley

- & Sons Inc.
- 12. Snustad, P. and Simmons, M. (2006) *Principles of Genetics* (4th Edition). NY: John Wiley and Sons Co.
- 13. Verma, P.S., Agarwal, V.K. (2009) *Genetics*, (9th Revised Edition). New Delhi: S. Chand and Co.
- 14. W. S. Klug, M. R. Cummings, C. A. Spencer. (2006) *Concepts of Genetics* (8th Edition) Noida: Pearson Education International.
- 15. Watson, J. D., Baker, T. A. Bell, S. P. Gann, A. Levine, M. Losick, R. (2004) *Molecular Biology of the Gene* (5th Edition). Noida: Pearson Education International.

Web References:

1. https://ndli.iitkgp.ac.in

COURSE CODE:BOT-IV.E-5

MARKS: 100 (75 Theory+ 25 Practicals)

CREDITS: 4 (3 Theory+ 1 Practical)

COURSE DURATION: 45 HOURS

COURSE OBJECTIVES:

To enable the students to learn various techniques in plant breeding with regards to crop productivity.

COURSE OUTCOMES: Students will be able to:

- CO 1: Identify and assess the role of various institutions and certification programmes in plant breeding.
- CO 2: Describe and compare various techniques in plant breeding
- CO 3: Employ manual emasculation procedure.
- CO 4: Calculate mean, median, mode, standard deviation, std. error for provided material.

Sr.No.	TOPICS	HOURS
Module 1: Introduction to Plant breeding, Organisations and Certifications		15
Introdu	uction to Plant breeding and Organizations	
1.1	Introduction, history, objectives, achievements and prospects. Centres of	
	origin of crop plants.	
1.2	Organizations & their mandate—CCARI- ICAR, ICRISAT, IRRI (Indian&	
	International)	
1.3	Plant breeders' & Farmers' Rights Phytosanitary and Seed	
	Certifications	

Modu	le 2: Hybridisation, Heterosis, Inbreeding Depression and Mutation breeding	15
Hybri	disation, Heterosis and Inbreeding Depression	
2.1	Pure line and mass selection	
2.2	Types and Techniques in hybridization Introduction, domestication and	
	acclimatization.	
2.3	Heterosis and inbreeding depression.	
Muta	tion Breeding; Breeding for stresses.	
2.4	Varieties developed in India through mutation breeding;	
2.5	Limitations of mutation breeding	
Modu	le 3: Biostatistical methods and Genetics of Pathogenicity	15
Biosta	tistical methods and Genetics of Pathogenicity	
3.1	Introduction to biostatistics: Terms used in biostatistics, types of data,	
	Sampling theories- random sample, sample size determination, precision, data	
	collection, processing and presentation of data: qualitative and quantitative	
3.2	Measures of central tendency: Mean, Median, Mode. Measures of variation:	
	standard deviation, standard error	
3.3	Concept of correlation between two variables and regression line Chi square	
3.4	Physiological races and types. Genetics of pathogenicity; vertical and	
	horizontal resistance & breeding for various biotic stresses in rice/wheat.	
	TOTAL	45 HOURS

COURSE TITLE: PLANT BREEDING AND BIOSTATISTICS (PRACTICAL) COURSE CODE: BOT-IV.E-5

MARKS: 25 CREDITS: 1

COURSE DURATION: 15 SESSIONS

Sr. No	MODULE 4: TOPICS	Practical
		sessions
1.	Emasculation and bagging of flowers using suitable plant material and	03
	Estimation of fruit and seed set in emasculated flowers	
2.	Correlation of floral structure with pollination system	01
3.	Estimation of pollen fertility (pollen viability) in (any two) locally grown	02
	crop species.	
4.	Study of centres of origin of some important crop plants.	01
5.	Study of soil pH using different soil types & relate it to crops	01
6.	Analysis of data for mean, median & mode, Standard deviation and	03
	standard error using suitable plant samples	
7.	Determination of correlation and regression, Chi square analysis	03
8.	Visit to CCARI- ICAR	01
	TOTAL	15 P

REFERENCES:

- 1. Acquaah, G. (2007) Principles of Plant Genetics & Breeding. Blackwell Publishing.
- 2. Mahajan, B.K.; (1997) *Methods in biostatistics* (6th edition). New Delhi: Jaypee Brothers.
- 3. Shukla, R.S. and Chandel, P.S.(2007) *Cytogenetics, Evolution, Biostatistics and Plant Breeding.*
- 4. Singh, B.D. (2005) *Plant Breeding: Principles and Methods* (7th edition). Ludhiana: Kalyani Publishers.
- 5. Singh, B.D. (2009) A textbook of Plant Breeding. Ludhiana: Kalyani Publishers.
- 6. Sokal R R and Rahlf H A. (1995) *Biometry: the principles and practice of Statistics for Biology. research.* (3rd edition). NY: W H Freeman and Co.

7. Zar J H, (1998) *Biostatistical analysis* (4th ed.) New Delhi: Prentice Hall.

Web References:

- 2. https://icar.org.in
- 3. https://ndli.iitkgp.ac.in

COURSE TITLE: TECHNIQUES & INSTRUMENTATION IN BOTANY (THEORY)

COURSE CODE: BOT-IV.E-6

MARKS: 100 (75 Theory+ 25 Practical) CREDITS: 4 (3 Theory+ 1 Practical) COURSE DURATION: 45 HOURS

COURSE OBJECTIVES:

Objective of the course is to impart knowledge of principle, methodology and application of various techniques & instrumentation.

COURSE OUTCOMES:

Upon successful completion of the course, students will be able:

CO 1: To understand, define and explain the principle, instrumentation and working of microscopy and radiobiology techniques used in Botanical research.

CO2: To understand the principle, working and applications of centrifugation and spectrophotometry in Botanical research.

CO 3: To understand, define the principle, working and applications of chromatography, electrophoresis and molecular techniques.

CO 4: To compare and contrast the techniques used in Research fields.

Sr.No	UNITS, TOPICS AND SUB-TOPICS	Hours
MODI METI	ULE I: MICROSCOPY AND RADIOBIOLOGY (PRINCIPLE HODOLOGY AND APPLICATIONS)	, 15
1.1	Light microscopy (compound microscopy and Phase contrast microscopy) Fluorescence microscopy	
1.2	Transmission and Scanning electron microscopy (sample preparation for electron microscopy, cryofixation,)	
1.3	Microscopic measurements (Micrometry & cytometry) and photography (micro and macro)	
1.4 1.5	Radioactivity and its measurements (Geiger Muller and Scintillation counter and autoradiography)	

MOD	ULE II : CENTRIFUGATION AND SPECTROPHOTOMETRY:	15
PRIN	CIPLE, METHODOLOGY AND APPLICATIONS	
2.1	Centrifugation: Low speed, high speed, cooling centrifuges and	
	ultracentrifugation Analytical, preparatory and gradient centrifugation	
2.2	UV visual spectrophotometry	
2.3	Fluorescence spectrophotometry	
2.4	Flame (Atomic absorption) spectrophotometry	
2.5	Mass spectrophotometry	
<u> </u>		
MOD	,	15
l l	ECULAR TECHNIQUES: PRINCIPLE, METHODOLOGY AND	
	LICATIONS	
3.1	Adsorption and partition chromatography	
3.2	Column chromatography (isocratic and gradient)	
3.3	High Performance Liquid Chromatography& Gas Chromatography	
	Electrophoresis: Agarose Gel Electrophoresis, Sodium Dodecyl Sulphate-	
3.4	Polyacrylamide Gel Electrophoresis, Iso-Electric Focussing and 2-	
	Dimensional Electrophoresis	
3.5	Polymerase Chain Reaction, Real Time PCR	
	TOTAL	45

COURSE TITLE: TECHNIQUES & INSTRUMENTATION IN BOTANY (PRACTICAL)

COURSE CODE: BOT-IV.E-6

MARKS: 25 CREDITS: 1

SR.NO	Module 4- TOPICS	PRACTICAL
1	Preparation of Molar, Normal and ppm solutions	1
2	Determination of Lambda (λ) max of a given solution Verification of Beer's Law	2
3	Micrometric dimensions (cytometry and micrometry)	2
4	Demonstration of SDS- PAGE/ Agarose gel Electrophoresis	2
5	Preparation of TLC plate and Separation of biomolecules	2
6	Visit to Instrumentation Lab (NIO/College/ Goa University)	1
7.	Demonstration of Flame photometry	1
8	Mini project: Comparison of data of ultra and gradient Centrifugation Microscopy: Analysis of different photo micrographs Photography: To submit a report of macro and microphotography Preparation of column for column chromatography.	4
	Total	15

REFERENCES:

- 1. Karp, G. (1999). *Cell and molecular Biology, Concepts and experiments*. 2nd edition. USA: John Wiley and Sons Inc.
- 2. Bajpai P. K. (2006). *Biological instrumentation and methodology*. Mumbai: S. Chand and Company. Ltd.
- 3. Plummer D.T. (2009). *An Introduction to Practical Biochemistry*. ^{3rd} edition. New Delhi: Tata Mc Graw Hill Education Private Ltd.
- 4. Ghatak K.L (2011). *Techniques and methods in Biology*. NY: Prentice Hall India Learning Private Limited.
- 5. Davey, H. M., &Kell, D. B. (1996). Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol. Mol. Biol. Rev., 60(4), 641-696.
- 6. Flegler, S. L., &Flegler, S. L. (1997). *Scanning & Transmission Electron Microscopy*. Oxford University Press.
- 7. Feist, A. (2018). *Next-generation ultrafast transmission electron microscopy-development and applications* (Doctoral dissertation, Georg-August-UniversitätGöttingen).
- 8. Kirsch, D. G., Diehn, M., Kesarwala, A. H., Maity, A., Morgan, M. A., Schwarz, J. K., & Haas-Kogan, D. (2018). The future of radiobiology. JNCI: Journal of the National Cancer Institute, 110(4), 329-340.

Weblinks:

- 1. amrita.olabs.edu.in,. (2013). Paper Chromatography. Retrieved 12 February 2020, from amrita.olabs.edu.in/?brch=8&cnt=1&sim=133&sub=73
- 2. vlab.amrita.edu,. (2011). Polyacrylamide Gel Electrophoresis. Retrieved 12 February 2020, from vlab.amrita.edu/?sub=3&brch=186&sim=319&cnt=1

- 3. vlab.amrita.edu,. (2012). Experiment-2 : Differential Protein Expression Analysis. Retrieved 12 February 2020, from vlab.amrita.edu/?sub=3&brch=237&sim=1248&cnt=1
- 4. vlab.amrita.edu,. (2011). Spectrophotometry. Retrieved 12 February 2020, from vlab.amrita.edu/?sub=2&brch=190&sim=338&cnt=1

COURSE TITLE: PLANT PATHOLOGY (THEORY)

COURSE CODE: BOT-IV.E-7

MARKS: 100 (75 Theory+ 25 Practicals)

CREDITS: 4 (3 Theory+ 1 Practical)

COURSE DURATION: 45 HOURS

COURSE OBJECTIVES:

To make the students aware of various plant pathogens and their control.

COURSE OUTCOME:

Upon successful completion of the course, students will be able to:

CO1: Identify various diseases and its causal agents of economically important plants.

CO2: Explain plant pathogen interaction.

CO3: Find effective control measures to deal with pathogen.

CO4: Isolate, observe and culture plant disease causing pathogens.

Sr. No	TOPICS	Hours
M	ODULE I: AN INTRODUCTION AND EPIDEMOLOGY OF	15
	PLANTS DISEASES	
1.1	History, Definitions and Importance of plant pathology	
1.2	Concepts and types of diseases in plants	
1.3	Biotic causes of plant diseases.	
1.4	Infectious agents (nematodes, protozoans, bacteria, fungi & viruses)	
	owth, reproduction, survival and dispersal of important plant	
	pathogens	
1.5	Disease triangle	
MODI	ULE II: PLANT DISEASE DEVELOPMENT (PATHOGENESIS)	15
	AND MANAGEMENT	

2.1	Parasitism and pathogenicity	
2.2	Symptomatology	
2.3	Host parasite interaction	
2.4	Recognition concept and infection,	
2.5	Role of enzymes, toxins & growth regulators in pathogenesis	
2.6	uantitative resistance (Physical, Biological & cultural methods)	
	Biochemical defences (oxidative burst; Phenolics, Phytoalexins, PR	
	proteins, antimicrobial substances and plantibodies), Quarantine	
	measures	
ODULI	E III: GENETICS OF PLANT DISEASE AND STUDY OF PLANT	15
	DISEASES IN INDIA	
3.1	Altered plant metabolism due to pathogens attack	
3.2	Genetics of resistance ('R' & avr genes, elicitors responses)	
3.3	Signalling and programmed cell death	
3.4	Study of Diseases (Name of disease, pathogen, symptoms and control	
	measures need to be studied)	
	Important diseases (Any 2 of each) of Paddy, Arecanut, Wheat,	
	Banana, Coconut, Sugarcane, Mango and Amaranth/ Raddish	
	TOTAL	45

COURSE TITLE: PLANT PATHOLOGY (PRACTICAL)

COURSE CODE: BOT-IV.E-7

Sr. No	Topics	Practical
		Sessions
1	Isolation and culture of fungal and bacterial pathogens.	02
2.	Demonstration of Koch's postulates	01
3.	Assay for cellulase /pectinase enzyme from diseased plant	02
4.	Study of plant diseases with reference to pathogen & symptomology (Viral, Bacterial & Fungal) (any 10 as per theory)	05
5	Anatomical observations of fungal infected plants (rust, blight, rots)	3
6	Study of antagonistic behaviour of bacterial pathogens	1
7.	Visit to Plant Pathology Laboratory (CCARI)	1
	Total	15

MARKS: 25 CREDITS: 1

COURSE DURATION: 15 SESSIONS

REFERENCES

- 1. Agrios, G.N. (2005). Plant Pathology (5th ed.). London: Academic Press.
- 2. Ownley, B. H. & Trigiano, R. N. (2017). *Plant Pathology, Concepts and Laboratory Exercises*. Florida: CRC Press.
- 3. Mehrotra, R.S. & aggarwal, A. (2017). Plant Pathology: Bangalore: MaGraw Hill Education.
- 4. Sharma, P.D. (2018). *Plant Pathology*. New Delhi: Rastogi Publishers.
- 5. Singh, R. S. (2019). Introduction to Principles of Plant Pathology. USA: Medtech
- 6. Gunasekaran, P. (2005). *Laboratory manual in Microbiology*. New Delhi: New Age International (P) Limited.

- 7. Aneja, K.R. (2009). *Experiments in Microbiology Plant Pathology & Biotechnology*. 4th ed. New Delhi: New Age International (P) Limited.
- 8. Bilgrami, K.H. & Dube, H.C. (1976). *A textbook of Modern Plant Pathology*. Lucknow: International Book Distributing Co.
- 9. Mehrotra, R.S. (1980). Plant Pathology. New Delhi: TMH
- 10. Pandey, B.P. (1999). Plant Pathology, Pathogen and Plant diseases. New Delhi: S. Chand & Co.
- 11. Rangaswami, G. (1999). *Disease of Crop plants of India*. New Delhi: Prentice Hall of India Pvt. Ltd.

WEBLINKS

- 1. https://www.springer.com/journal/42161
- 2. https://bsppjournals.onlinelibrary.wiley.com/journal/13653059

COURSE TITLE: ALGAL BIOTECHNOLOGY (THEORY)

COURSE CODE: BOT-IV.E-8

MARKS: 100 (75 Theory+ 25 Practicals)

CREDITS: 4 (3 Theory+ 1 Practical)

COURSE DURATION: 45 HOURS

COURSE OBJECTIVES:

This course provides knowledge on diversity of algal types in Goa and understands the potential significance of algal resources as food, fodder, fuel and environment sustenance

COURSE OUTCOMES: Students will be able to

CO1: Apprise the students to the methods of algal culture techniques.

CO2: Assess, compare and manage algal in water bodies

CO3: Explore algal bioresources and understand their commercial applications.

CO4: Understand opportunitities for start-ups through eco-friendly biofertilizer production using algae.

Sr. No	TOPICS	Hours
М	ODULE I: METHODS OF ALGAL ISOLATION AND CULTURE	15
1.1	Methods of algal isolation	
1.2	Types of algal cultures (synchronous, continuous, mass and "in vitro" culture)	
1.3	Maintenance and growth of algal culture (freshwater and marine algae)	
1.4	Multiplication of economically important algae (Rhodophyta,	
	Phaeophyta, Chlorophyta, Cyanophyta)	

18

MOI	DULE-II: PHYCOREMEDIATION AND ALGAL POLLUTION	15
2.1 2.2	Phycoremediation Sewage disposal and waste treatment, textile and effluent sugar	
2.3 2.4 2.5 2.6 2.7	industry Single cell algal protein and phycocolloids Algae as indicator of pollution, aquatic pollution by algae: causes and consequences Eutrophication and its impact on water quality Algae in environmental health, sewage treatment, Algal Blooms and their control	

Module	III: COMMERCIAL APPLICATIONS OF ALGAL TECHNOLOGY	15
3.1	Application of algae in carbon sequestration Application of algae as food and fodder	
3.2 3.3	Application of algae in pharmaceutical industries Algae in biofuels	
3.3	Algae as Biofertilzers, application of cyanobacteria in bioplastics	
3.4	Algae as secondary metabolites	
3.5	Applications of algae in entrepreneurship development	
3.6		
	TOTAL	45

COURSE TITLE: ALGAL BIOTECHNOLOGY (PRACTICALS)

PAPER CODE: BOT-IV.E-8

MARKS: 25 CREDITS:1

COURSE DURATION: 15 SESSIONS

Sr. No	TOPICS	PRACTICALS
1	Survey of market products of algal material	2
2	Visit to NIO and submission of report	2
3	Chromatographic separation of algal pigments (β-carotene containing algal	2
4	Documentation of various types of algae found in fresh and marine ecosystems of Goa	2
	Mini Projects Isolation and estimation of algal proteins and lipids Culture of algae (Fresh & marine water, one each) Preparation of algal biofertilizer.	7
	Total	15

REFERENCES

- 1 .Becker, S. W. (1994). Micro Algae Biotechnology and Microbiology. Cambridge University Press.
- 2. Ignacimuthu, S. (1996). Basic Biotechnology. New Delhi: Tata McGraw Hill Publishing Limited.
- 4. Tridevi, P. C. (2001). Algal Biotechnology. Jaipur: Point Publisher.
- 5. Venkatraman, G. S. (1972). *Algal Biofertilizers and rice cultivation*. New Delhi: Today and Tomorrows Printers and Publishers.
- 6. Zajic, J. E. (1970). Properties and Products of Algae. New York: Plenum Press.
- 7. Bold ,H.C. and Wynne ,M.J. (1976). Introduction to Algae structure and reproduction. Prentice hall.
- 8. Presott, G.W. (1970). How to know freshwater Algae. W.C. Braun & Co.
- 9. Desikachary, T.V. (1972). *Taxonomy and Biology of Blue Green Algae*. University of Madras **Articles**:
 - Aziz M.A. and Ng W.G. (1993). Industrial wastewater treatment using an activated algae-reactor. *Water Sci. Technol.* **28: 71–76.**
 - Thomas D.G., Minj N., Mohan N. and Rao P.H. (2016.) Cultivation of microalgae in domestic wastewater for biofuel applications An upstream approach. *J. Algal Biomass Utln.* 7(1): 62-70
 - Power, M., Van der Meer, J., Tchelat, R. (1998). Molecular based methods can contribute to assessments of toxological risks and bioremediation strategies. *J. Microbiol*. Methods, **32: 107 –119**.

COURSE TITLE: PLANT MOLECULAR BIOLOGY (THEORY) W.e.f. July 2022

COURSE: BOT-V.C-7

MARKS: 100 (75 Theory+25 Practicals)

CREDITS: 4 (3 Theory +1 Practical) COURSE

DURATION: 45 HOURS

PREREQUISITE COURSES: Biology at XIIth preferred.

COURSE OBJECTIVE:

At the end of the course students will be able to explain life processes at the sub-cellular and molecular (gene) level and know general principles of gene organization and functions.

COURSE OUTCOMES

Upon successful completion of the course, students will be able to:

CO1: Outline, memorize and express process of central dogma

CO2: Understand molecular basis of life

CO3: Estimate and evaluate methods of quantitation of macromolecules

CO4: Learn and demonstrate basic molecular techniques of nucleic acid isolation and separation by electrophoresis.

Sr. No	TOPICS	Hour s
MODULE-I: NATURE OF GENETIC MATERIAL AND DNA REPLICATION		15
1.1	Characteristics of genetic material, evidences to prove DNA & RNA as as genetic material, Watson and Crick's model of DNA; Polymorphism of DNA.	
1.2	Central dogma of molecular biology, Model organism for studying molecular biology; C-value paradox; Chargoff's Law, Franklin's and Wilkin's work	
1.3	General feature of DNA replication (replication eye, replication forks); Types of DNA replication, mechanism of DNA replication in Prokaryotes & in Eukaryotes (Dispersive, Conservative and Semi- conservative); enzymes of replication –DNA Primase; DNA polymerases.	
1.4	Recombination/Holiday model	

	Module II: DNA DAMAGE AND TRANSCRIPTION	15
2.1	Types of DNA damages and repair (direct reversal of damage, excision	
2.2	repair)	
	Structure and functions of mRNA, tRNA and rRNA, RNA polymerases	
2.3	Secondary structure of mRNA and its functions	15
2.4	Transcription of mRNA in prokaryotes & eukaryotes	13
2.5	Post transcriptional event; eukaryotes splicing & processing.	
	MODULE III: GENE REGULATION, EXPRESSION & TRANSLATION	
	(PROTEIN SYNTHESIS)	
3.1	Units of gene (Cistron, recon, muton, enhancers, split genes, overlapping	
	genes; transposons and its role in gene structure, promoters & terminators.	
3.2	Gene regulation in prokaryotes (Lac operon concept/tryptophan) &	
	eukaryotes; Inducible and repressible mechanism.	
3.3	Mechanism & factors of Translation.	
3.4	Post translational modifications; Protein targeting	
	Total	45

COURSE TITLE: PLANT MOLECULAR BIOLOGY (PRACTICALS) COURSE CODE: BOT-V. C-7 MARKS 25

CREDIT 1

COURSE DURATION: 15 SESSIONS (inclusive of 3 PA)

Sr. No	TOPICS	Practical sessions
1	Isolation of plant genomic-DNA	3
2	Quantification of DNA by DPA method.	2
3	Isolation and estimation of RNA from plant tissue(orcinol method).	2
4	Preparation of Agarose gel and running of DNA	3
5	Demonstration of DNA amplification by PCR	3
6	Mini Project 1. Spooling of DNA from different plant samples	2
	Total	15

REFERENCES:

- 1. Gupta P.K. (2018) Molecular Biology. Rastogi Publications.
- 2. Alberts Bruce, Johnson A. Lewis Julian., Raff Martin., Roberts Keith., and Walter Paul (2002).
 - Molecular Biology of the Cell. 4th edition. New York: Garland Publishing, Inc.
- 3. Buchanan B., Gruissem Wilhelm and Jones Russell L. (2015) *Biochemistry and molecular biology of plants*. Wiley Blackwell pub Ltd.
- 4. Pal, J.K. and Ghaskadabi S.S. (2008) Fundamentals of Molecular Biology. Oxford.
- 5. James D. Watson (2007). *Molecular Biology of the Gene* (6th Edition) by, Tania A. Baker, Stephen P. Bell, and Alexander Gann.
- 6. Kleinsmith L.J and Kish V.M (1995). *Principles of Cell and Molecular Biology* (2nd Edition). New York: Happer Collins College Publishers.
- 7. Lehninger (2008). *Principles of Biochemistry* by David L. Nelson and Michael M.
- 8. Dube, R.C. (2008). A Text Book of Biotechnology. New Delhi: S. Chand pub.
- 9. Lewin B. (2000). Genes VII. New York: Oxford University Press.
- 10. Buchanan B.B, Gruissm W. and Jones R.L (2000). Biochemistry and Molecular biology.
- 11. Johnson Charlotte (2009) *Plant molecular biology*. Oxford Book company.
- 12. David Freifelder (1983) Jones & Bartlett publishers. *Molecular biology*. 2nd Ed. Reprint 1993. Narosa Publishing House.

Web References:

- 1. https://www.schoolfinder.com >
- 2. http://www.plantcell.org > content > teaching-tools-plant
- 3.htps://www.cell.com > molecular-plan
- 4. https://www.freebookcentre.net > The-Molecular-Biolo...
- 5. https://nptel.ac.in/courses/102106025

COURSE TITLE: BIOINFORMATICS (THEORY) W.e.f. July 2022

COURSE CODE: BOT-V.E-9

MARKS: 100 (75 Theory +25 Practical) CREDITS: 4 (3Theory +1 Practical)

DURATION: 45 HOURS

PREREQUISITE COURSES: Biology at XIIth preferred.

COURSE OBJECTIVES:

The course will help the students to understand the fundamentals of bioinformatics and tools available.

COURSE OUTCOMES:

Upon successful completion of the course, students will be able to:

CO1: Introduce, explain and explore biological databases through websites (online) and the need of Bioinformatics.

CO2: Compare and contrast protein information resources and genome information resources, different biological databases and its role in molecular level sequencing CO3: Relate the theoretical knowledge with practical sessions. Enable data handling and analysis.

CO4: Define the terminologies, types of biological databases, its applications and compare the homology between different biological species.

	TOPICS	Hours
MODU	JLE 1: INTRODUCTION TO BIOINFORMATICS AND INFORMATION NETWORKS	
1.1	Introduction to bio-informatics, The biological sequence / structure deficit.	15
1.2	Genome projects, Pattern recognition and prediction, Levels of protein structure, Ramachandran Plot	
	Role of Chaperons, Sequence analysis.	
1.5	Internet and the facilities available on it, computational biology, What is World Wide Web, Web browsers and Web Addresses.	
	The National Center for Biotechnology Information- NCBI, MMDI The European Molecular Biology Network- EMBnet Bioinformatic programme in India- BTISNet, BPI-2004,	

MOI	DULE 2: INTRODUCTION TO BIOLOGICAL DATABASES AND SEQUENCE ALIGNMENT METHODS.	15
2.1	Introduction To Biological Database: GenBank, EMBL, SwissProt, PROSITE, EC-ENZYME, PDB, GDB, OMIM,PIR-PSD. Introduction and comparison of Homology, Analogy, Orthology	15
2.2	 And Paralogy. Alignment based methods and Hybrid method. Comparison of Computer Prediction Algorithms Introduction to pairwise and multiple sequence alignment; 	
2.3	Comparison of sequences; Global alignment: The Needleman and Wunsch algorithm; Database interrogation, Alphabet and complexity; Pairwise database searching.	
2.4	BLAST; Databases of Multiple Alignments, Clustal Omega	
_	ULE 3: PROTEIN AND GENOME INFORMATION DURCES	15
3.1	Introduction to Protein information resources, Primary Sequence Databases, Composite protein sequence databases, Secondary databases, Composite protein pattern databases Structure classification databases. Introduction to genome information resources, DNA sequence databases, Specialised genomic resources, ORF (Open Reading Frame Finder), TIGR Genome Resources ,Genome comparison Genome	
	Annotation, Microarray image analysis Total	45

COURSE TITLE: BIOINFORMATICS

COURSE CODE: BOT-V.E-9

MARKS: 25

CREDITS: 1

SR. NO	Module 4- TOPICS	PRACTI CAL
	Biological databases and exploring various websites- NCBI, PUBMED and GenBank databases	3
	To explore EBI server and searching EMBL	2
	Exploring and querying UniProt KB	1

Pairwise global alignment of protein and DNA using Needleman- Wunsh algorithm.	2
Obtaining sequences for Pairwise alignment and to interpret the results to study the homology between the sequences.	2
Database searching using different versions of BLAST and FASTA and Derivation of relationships of query sequences.	2
Use of Clustal Omega for multiple sequence alignment	1
MINI PROJECTS Drug designing Construction of phylogenetic trees/cladogram (comparison between different organisms)	2
TOTAL	15

REFERENCES:

- 1. Attwood, D. J., Parry Smith D.J. and Phukan, S. (2011). *Introduction to Bioinformatics*. Pearson education.
- 2. Ignacimuthu, S. (2005). Basic Bioinformatics. Narosa PublishingHouse
- 3. Khan, I. A. and Khanum, A. (2003). Fundamentals of Bioinformatics Ukaaz publications.
- 4. Mani, K. and Vijayaraj, K.A. (2002). Bioinformatics for Beginners. Aparnaa Publication.
- 5. Murthy, C. S. V. (2004). *Bioinformatics*. Himalaya Publishing House.

Web References:

- 1. http://genes.mit.edu/GENSCAN.html
- 2. http://vmoc.museophile.org ComputerHistory
- 3. http://www.clcbio.com/index
- 4. http://www.genome.jp
- 5. http://www.genome.jp/dbget/LinkDB
- 6. http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml
- 7. http://www.softberry.com/berry
- 8. http://www.studentworkzone.com/
- 9. www.ebi.ac.uk
- 10. www.fgcu.edu/support/office2000
- 11. www.learnthenet.com WebPrimer
- 12. www.clustawomega.org
- 13. www.embl.org

Research article:

- 1. Antre R.V *et al.*, Computer aided Drug Design: An Innovative Tool for Modeling, Open Journal of Medicinal Chemistry, 2012,2,pp139-148.
- 2. Surabhi et al, Computer aided drug designs: An overview, Journal of Drug Delivery and Therapeutics, 2018; 8(5);pp504-509. Available at http://jddtonline.info

Drug Design Softwares:

- 1. ArgusLab- https://www.arguslab.com
- 2. Schrodinger- https://www.schrodinger.com/
- 3. VlifeMDSTM- https://vlifesciences.com/
- 4. Accelrys
- 5. SYBYL
- 6. AutoDock- https://autodock.scripps.edu/
- 7. FlexX- https://www.biosolveit.de/FlexX
- 8. Vakser Lab
- 9. Ligplot: https://www.ebi.ac.uk/thornton-srv.software/LIGPLOT/
- 10. LiganScout- https://www.intelligand.com

COURSE TITLE: SEED TECHNOLOGY (THEORY) W.e.f. July 2022

COURSE CODE:BOT-V. E-10

MARKS: 100 (75 Theory+ 25 Practical)

CREDITS: 4 (3 Theory+ 1 Practical) COURSE

DURATION: 45 HOURS

PREREQUISITE COURSES: Biology at XIIth preferred.

COURSE OBJECTIVE:

Characterize seeds based on their viability, know and apply the theoretical knowledge to conserve the germplasm.

COURSE OUTCOMES:

Upon successful completion of the course, students will be able to:

CO 1: Review characteristics of good seeds and their role in germination. CO 2: Know methods of seed testing and understand seed viability.

CO 3: Realize the role of seed banks, seed storage units and seed testing organizations. CO 4: Apply knowledge of seed types to the field.

Sr. No	UNITS, TOPICS AND SUB-TOPICS	Hours
	Module-I: PRINCIPLES OF SEED TECHNOLOGY AND SEED TESTING ORGANIZATIONS	
1.1	Concepts and role of seed technology; Seed definition; types of seed (breeders seed, foundation seed, and certified seed); characteristics of good seeds, Field inspection, Seed certification, National seed corporation.	
1.2	International seed testing association; central and state seed testing laboratory; Role of ICRISAT AND ICAR; Procedure, Equipments for seed testing; and importance of seed testing.	
	II: PROCESSING AND PLANT BREEDING IN RELATION D TECHNOLOGY	15
2.1	Methods of seed drying and their advantages; Seed cleaning, Seed processing, seed treatments.	
2.2	Seed viability, seed dormancy – methods of breaking dormancy (any two methods), seed germination, Maintenance of breeders seed methods in self and cross fertilized crops. Development trial and release of seed variety. Use of heterosis in crop improvement.	

Module	III: SEED PROTECTION AND STORAGE	15
3.1	Importance of epidemic and seed borne diseases; Factors affecting seed infection	
3.2	Seed storage: Control of Seed borne pathogens; Pest problems and their treatment during storage.	1
3.3	Germplasm and its conservation, seed banks and types of seed collection, Concept of seed marketing, forecasting of seeds.	
	Total	45

COURSE TITLE: SEED TECHNOLOGY

(PRACTICALS) COURSE CODE: BOT-V.E-10

MARKS: 25 CREDITS: 1

DURATION: 15 SESSIONS (inclusive of 3 PA)

		Practica
Sr. No	TOPICS	1
		session
		S
1	Physical and chemical properties of seeds	2
2	Structure of dicot and monocot seeds from various plant species	2
3	To test seed viability (2,3,5-triphenyl tetrazolium chloride test)	2
4	Breaking of seed dormancy using physical methods.	2
	Mini Projects	
	1. Breaking of seed dormancy methods (chemical, hormone &	
5	temperature)	6
	2. Seeds and diseases	
	3. Seed moisture and germination	
	4. Preparation of seed balls	
6	Visit to ICRISAT/ seed tech plant and report submission	1
	Total	15

REFERENCES:

- 1. Agrawal (2005). Seed Technology. New Delhi: Oxford and IBH Publishing Co. Pvt. Ltd.
- 2. Pandey (2010). A text book of Botany. New Delhi: S. Chand and Company Ltd.
- 3. Reddy (2008). Principles of crop production. New Delhi: Kalyani Publishers.
- 4. Santra and Chatterjee (2007). *College Botany*. Kolkata: New Central Book Agency (P) Ltd..
- 5. Umaraniet. A.L. (2006). Experimental Seed Science and Technology. Jodhpur: Agrobios.
- 6. Dutta (1983). A Class book of Botany. Calcutta: Oxford University Press.

Web References:

- 1. https://onlinecourses.swayam2.ac.in/cec20_ag03/preview
- 2. http://www.jnkvv.org/PDF/30032020194456Principles_of_Seed_Technology_Dr_Rudrasen_Singh.pdf
- 3. http://sgvu.bestbookbuddies.com/cgi-bin/koha/opac-detail.pl?biblionumber=69584
- 4. http://unaab.edu.ng/funaab-ocw/opencourseware/Principles%20of%20Seed%20Technology.pdf
- $5. \ \underline{https://www.rvskvv.net/images/Seed-Technology_17.04.2020.pdf}$

COURSE TITLE: PLANT DRUG TECHNOLOGY AND PHARMACOGNOSY

(THEORY) W.e.f. July 2022 COURSE CODE: BOT-V.E-11

MARKS: 100(75 Theory+ 25 Practicals) CREDITS: 4 (3 Theory+ 1 Practical)

DURATION: 45 HOURS

PREREQUISITE COURSES: Biology at XIIth preferred.

COURSE OBJECTIVES:

To enable the students to learn and understand the fundamental knowledge, techniques & skills in plant drug industry, drug discovery and development.

COURSE OUTCOMES:

Upon successful completion of the course, students will be able to:

CO 1: Explain, discuss and classify medicinal plants, plant drug and technology

CO 2: Explain and illustrate, biosynthetic pathways, bioassays and working of instruments

CO 3: Discuss and compare methods of extraction and analysis of phytochemicals.

CO4: Apply fundamental knowledge, techniques and skills in plant drug industry, drug discovery and development.

SR. NO.	TOPICS	HOURS
	MODULE I: INTRODUCTION	15
1.1	Introduction to plant drug technology and Pharmacognosy	
1.2	Classification of drugs: morphological, chemical and pharmacological.	
1.3	Identification of marker compounds in the formulations.	
	Bioassays, Fingerprint and identification of plant drugs.	
1.4	Biosynthesis of alkaloids. Metabolic pathways of selected	
	plants (from Ocimum sanctum and Rauwolfia).	
	MODULE II: CULTIVATION, COLLECTION	15
	AND CONSTITUENTS	
2.1	ROOTS/ RHIZOME: Rauwolfia and Curcuma	
2.2	LEAVES: Adathoda and Ocimum	
2.3	SEEDS: Fenugreek and Nutmeg	
2.4	FRUITS: Coriander and Senna pod	
2.5	FLOWERS: Clove and Rose	
	MODULE III: PHYTOCHEMICALS	15
	(EXTRACTION AND ANALYSIS)	
3.1	Extraction methods and principles. Traditional and modern	
	techniques	
3.2	Methods of Characterization: NMR,MS,UV-Vis, GC-MS,	
	LC- MS	
3.3	Analysis of Pigments, Phenolics, Flavonoids and Alkaloids.	

TOTAL	45

COURSE TITLE: PLANT DRUG TECHNOLOGY AND PHARMACOGNOSY (PRACTICAL)

COURSE CODE: BOT-V.E-11 MARKS: 25 CREDITS: 1

PRACTICAL SESSIONS: 15

Sr. No.	MODULE IV: TOPICS	Practical
	Isolation of alkaloids and Phenolics	
1.		02
2.	Test for alkaloids: Mayer's, Wagner's, Dragendorffs' reagent	01
3.	Disc diffusion for antimicrobial assay	02
4.	MIC evaluation for antimicrobial assay	02
	Anatomical study of <i>Nux vomica</i> seeds, Ginger, Citronella leaf,	
5.	Senna leaf & its medicinal properties	04
6.	Histochemical tests for Oils and Fats – Castor seed/ EucalyptusCitrus	01
	Microchemical test of Arum / Colocasia leaves for observation of	
7.	Calcium oxalate crystals.	01
	Mini project Adulteration of crude drugs	02
8.		
	TOTAL	15

REFERENCES:

- 1. Gokhale, S.B.& Kokate, C.K. (2009). *Pharmacognosy*. Maharashtra: Nirali Prakashan.
- 2. Khandelwal, K. R. (2008). Practical Pharmacognosy. Maharashtra: Nirali Prakashan.
- 3. Kokate, C. K. (2008). *Pharmacognosy*. Maharashtra: Nirali Prakashan.
- 4. Qadry, J.S. (2014). *A Textbook of Pharmacognosy, Theory and Practicals*. New Delhi:CBS Publishers & Distributors.
- 5. Trease, G.E. & Evans, W.C., (2002). *Pharmacognosy*. USA: Elsevier Science Publishers.
- 6. Wallis, T. E. (2005). Textbook of Pharmacognosy. New Delhi: CBS Publishers & Distributors.
- 7. Leland, J. C. (2006). *Natural Products from Plants*. New York: Taylor and Francis. 8.Harborne, J. B. (2010). *Phytochemical Methods*. New Delhi: Springer International edition.
- 9. Mammen, D. (1991). *Methods in Plant Chemistry and Economic Botany*. New Delhi: Kalyani publishers.
- 10. Kumar, G. S., & Jayaveera, K. N. (2014). *A Textbook of Pharmacognosy and Phytochemistry*. New Delhi: S. Chand & Company Pvt. Ltd.
- 11. McCreath, S. B., & Delgoda, R. (2017). *Pharmacognosy: Fundamentals, Applications and Strategies*. Amsterdam: Mica Haley.
- 12. Shah, B., & Seth, A. (2010). *Textbook of Pharmacognosy and Phytochemistry*. New Delhi: Elsevier Health Sciences.

- 13. What is Pharmacognosy. (2020, February 12). Retrieved from www.pharmacognosy.com: https://pharmacognosy.com/pharmacognosy-consulting-firm/
- 14. *Pharmacognosy*. (2020, February 12). Retrieved from www.phytojournal.com: http://www.phytojournal.com/pharmacognosy
- 15. *Pharmacognosy Journal*. (2020, February 12). Retrieved from www.scimagojr.com:

https://www.scimagojr.com/journalsearch.php?q=19700175096&tip=sid 16. (2020, February 12). Retrieved from www.medicinalplants-pharmacognosy.com: https://www.medicinalplants-pharmacognosy.com/

Web References:

- 1. www.britannica.com
- 2. www.pharmacyguideline.com
- 3. https://www.springer.com
- 4. https://www.biologydiscussion.com
- 5. amrita.edu/course/herbal-drug-technology-theory
- 6. pharmacyinfoline.com/herbal-drug-technology

COURSE TITLE: ORGANIC FARMING (THEORY) W.e.f. July 2022

COURSE CODE:BOT-V.E-12

MARKS: 100 (75 Theory +25 Practical) CREDITS: 4 (3Theory +1 Practical) COURSE DURATION: 45 HOURS

PREREQUISITE COURSES: Biology at XIIth preferred

COURSE OBJECTIVES:

The course provides knowledge of principles and practices of organic agriculture and its role in sustainable crop production.

COURSE OUTCOMES:

Upon successful completion of the course, students will be able to:

- CO 1: To understand the need and basics of Organic Farming, create awareness of the social, economic and environmental context for current and future organic agricultural production and management.
- CO 2: Assess the importance of organic foods in today's World.
- CO 3: Analyse and interpret the given problem in components of Organic Farming.
- CO 4: Apply the knowledge in becoming an entrepreneur in Organic Farming to create own business plan.

Sr.No.	UNITS, TOPICS AND SUB-TOPICS	HOURS
MODULE 1: Concept of Organic farming, compost, manures and its application.		15
1.1	Introduction: Farming, organic farming, concept and development of organic farming.	
	Principles of organic farming, Types of organic	
	farming. Needs and benefits of organic farming.	
	Agencies and institutions related to organic agriculture.	
	Farm components for an organic farm	

1.2	Manure application: Composted vs. uncomposted	
	manure Composting- principles, stages, types and	
	factors Composting methods, Vermicomposting	
	Bio-fertilizers, M.I., F.I.M., Neem cake, Mulching, Elley farming, Bioinoculation	
MODU	JLE II: Soils, Soil Fertility Management and fertilizers	15
2.1	Soil types and Soil tillage	
2.2	Factors affecting soil fertility and	
2.3	productivity Land preparation	
2.4	Water management for good soil, Commercial fertilizers,	
2.5	composition Residual effects and fertilizer use efficiency	
2.6	Foliar application and its concept	
MODU	JLEIII: Organic plant protection, Seed Certification and Entrepreneurship Development	15
3.1	Plant protection- cultural and mechanical	
3.2	Plant protection- bio pesticide and bio control agents. Allelopathic methods of weed control.	
3.3	Certification of organically produces seeds.	
3.4	Entrepreneurship – Concept, characteristics, approaches, need for entrepreneurship in Organic farming	
3.5	Popularization of organic farming.	
3.6	Marketing of organic produce. National and international scenario of organic farming	
	TOTAL	45

COURSE TITLE: ORGANIC FARMING (PRACTICAL) COURSE CODE: BOT-V.E-12

MARKS: 25 CREDITS: 1

PRACTICAL SESSIONS: 15

Sr	Module IV- Topics	Practic al
N		session
0		S
1.	Comparative analysis of pH, EC, organic C, total N, available N, P, K and S from organic and inorganic data (obtained data).	01
2.	Survey of weeds in crop fields (Organic v/s inorganic farming)	01
3.	Study of soil types.	01
4.	Study of bio pesticide (Neem cake)	01
5.	Study of Mulching	01
6.	Study of nitrogen fixing bacteria in leguminous plants	01
7.	Visit to an organic farm	02
8.	Mini project: i) Preparation of Compost/ vermicompost ii) Effect of various manures on plant growth. iii) Study of recycling of farm waste. iv) Effect of AM inoculant on plant growth.	07
Total	<u>I</u>	15

REFERENCES:

- 1. Chakraverty, A. (1991). Post-harvest technology of cereal, pulses and oil seeds. Oxford: IBH Publishing Co. Pvt Ltd.
- 2. Deshmukh, S.N. (2012). Organic Farming: Principles, Prospects and Problems, India: Agrobios Publishers.
- 3. Gehlot, D. (2010). *Organic Farming: Components and Management*, India: Agrobios Publishers.
- 4. Gupta, O.P. (2010). Modern weed management. Agrobios Publishers.
- 5. Israelsen, O.W. and Hansen, V.E. (2015). *Irrigation Principles and Practices*. John Wiley & Sons Inc.
- 6. Kanwar, J.S. (1978). *Soil Fertility, Theory and Practice*. Indian Council of Agricultural Research Publication.
- 7. Palaniappan, S.P. and Annadurai, K.A. (2010). *Organic Farming: Theory and Practice*. Indian Council of Agricultural Research, Scientific Publishers

- Journals Dept.
- 8. Rao, V.S. (2000). Principles of Weed science. Taylor & Francis Publishers.
- 9. Reddy, T.Y. and SankarReddi, G. H. (2015). *Principles of Agronomy*. Kalyani Publishers. 10. Sadhu, A.N. and Singh, A. (2014). *Fundamentals of Agricultural Economics*. Himalaya Publishing House.
 - 11. Saraswat, V.N., Bhan, V. M. and Yaduraju, N.T. (2003). Weed management (ICAR), Indian Council of Agricultural Research Publication.
 - 12. Sharma, A.K. (2002). A hand book of Organic Farming. Agrobios Publishers.
 - 13. Singh, B. D. (2006). Plant Breeding Principles and Methods. Kalyani Publishers.
 - 14. Tisdale, S.L., Nelson, W.L., Beaton, J.D. and Havlin, J. L. (2013). *Soil fertility and fertilizers*. Pearson Publishers.
 - 15. Yawalkar, K. S., Agrawal, J.P. and Bokde, S. (1962). *Manures and Fertilizers*. Agri-Horticulture Publishing House.
 - 16. Introduction to Organic Farming. (n.d.).
 Retrieved February 13, 2020, from http://agritech.tnau.ac.in/:
 http://agritech.tnau.ac.in/
 - 17. Reddy, J. (2017, February 19). *Organic Agriculture Information Guide*. Retrieved February 13, 2020, from AgriFarming: https://www.agrifarming.in/organic-agriculture

Web References:

- 1. http://agritech.tnau.ac.in
- 2. https://www.agrifarming.in
- 3. https://www.springer.com
- 4. https://www.biologydiscussion.com
- 5. www.vedantu.com

COURSE TITLE: PLANT GENETIC ENGINEERING

COURSE CODE: BOT- VI.C-8

MARKS: 100 (75 Theory +25 Practical)

CREDITS: 4 (3Theory +1 Practical)

COURSE DURATION: 45 HOURS

COURSE OBJECTIVES: This course is to develop fundamental knowledge and skills in various aspects of Genetic engineering.

COURSE OUTCOME: Upon successful completion of the course, students will be able to:

CO1: Understand, associate and apply the basic knowledge of tools in plant genetic engineering.

CO2: Interpret, analyze and understand the techniques in plant genetic engineering.

CO3: Apply the knowledge of plant genetic engineering in various fields.

CO4: State the Biosafety regulations and assess its procedure and importance.

Sr. No	TOPICS	HOURS
	Module 1: Tools in Recombinant DNA technology	15
1.1	Introduction to Recombinant DNA technology, DNA cloning- cell	
	based and cell free.	
1.2	Enzymes- Importance in plant genetic engineering, Nucleases: Exo and	
	endonucleases; Types I, II, III and Nomenclature. DNA ligases. DNA	
	modifying enzymes, Factors affecting enzyme activation.	
1.3	DNA ligation, transformation, selection of transformed bacteria-	
	antibiotic selection.	
1.4	Vectors- Key features, advantages and disadvantages. Prokaryotic	
	vectors - plasmids, cosmids, Lambda phage. Eukaryotic vectors-	
1 5	Bacterial Artificial Chromosome, Yeast Artificial Chromosome.	
1.5	DNA Isolation and sequencing (Sanger & Coulson, Maxam & Gilbert).	

	Module 2 : Techniques in Recombinant DNA technology	15
2.1	Methods of Gene transfer: Indirect and Direct methods of gene transfer.	
2.1	Indirect method: Agrobacterium mediated gene transfer- T-DNA,	
	Ti plasmid and Ri plasmid derived vector systems. T-DNA transfer.	
2.2		
2.3	Direct methods of gene transfer: Physical and Chemical.	
2.4	Selection of transformants; selectable marker (Antibiotic resistant	
2.7	markers, herbicide resistant markers) and reporter genes (Luciferase,	
2.5	GUS, GFP).	
	Gene Cloning: Construction of genomic and cDNA libraries, screening of	
	DNA libraries; complementation, colony hybridization; Southern,	
	Northern and Western blotting; ELISA, CRISPR-Cas9.	
	Polymerase Chain Reaction, Techniques of DNA fingerprinting (RFLP,	
	RAPD, AFLP)	

	Module 3: Applications of Genetic Engineering	15
3.1	Applications in Agriculture: Transgenic crops with improved quality traits: FLAVR	
3.2	SAVR Tomato, Golden rice, Bt cotton, herbicide resistant plants. Applications in Environment: Role of transgenics in bioremediation Mycoremediation, Phytoremediation, and Waste management(UASB reactor), Remediation of Xenobiotic compounds Molecular techniques in Phytoremediation	
3.3	. Applications in Industries: Edible vaccines; Industrial enzymes (Protease, Lipase); Genetically Engineered Products – Human Growth Hormone; Humulin; Superweeds	
3.4	Bioethics and Biosafety: Intellectual Property Rights, Genetic engineering and Public issues. Biosafety regulations	
	Total	45

COURSE TITLE: PLANT GENETIC ENGINEERING (PRACTICAL)

COURSE CODE: BOT- VI.C-8

MARKS: 25 CREDITS: 1

COURSE DURATION: 15 SESSIONS

Sr. No	Topics	Practical
		Sessions
1	DNA isolation by CTAB/(any other) method	02
2.	Estimation of DNA	02
3.	Agarose Gel Electrophoresis	02
4.	Restriction digestion of DNA	02
5.	Sequence reading – Sanger method/Maxam Gilbert	02
	method – problem	
6.	Agrobacterium tumefaciens-mediated plant	01
	transformation. (Virtual Library)	
7.	Small scale plasmid preparation from <i>E. coli</i>	03
8.	Visit to a leading biotechnology institute/ Guest Lecture	01
	by Biotechnologist/ Goa university/ College and Report	
	making.	
	Total	15

- 1. Brown, T. A., (2006). *Gene cloning and DNA analysis An Introduction*. UK: Blackwell scientific publishers.
- 2. Chawla, H.S. (2000). *Introduction to Plant Biotechnology*. New Delhi: CRC Press.
- 3. Dovstekel (2005). Microarray Bioinformatics. UK: Cambridge University press.
- 4. Dubey, R.C. (2014). *Introduction to Plant Biotechnology*. New Delhi: S. Chand & Co.
- 5. Ignacimuthu, S. (1997). *Plant Biotechnology*. New Hampshire: Science Publishers.
- 6. Purohit, S.S. (2003). Agricultural Biotechnology. New Delhi: Agrobios.
- 7. Sobti, R.C & Pachauri, S.S. (2009). Essentials of Biotechnology. New Delhi: Ane Books.
- 8. Gupta, P. K. (1996). *Elements of Biotechnology*. Meerut: Rastogi Publications.
- 9. Lewin, B. (2004). Genes VIII. UK: Oxford University Press.
- 10. Primrose, S. B, Twyman, R. M. & Old R. W. (2001). *Principles of gene manipulation: An Introduction to genetic engineering*, 6th ed. UK: Blackwell scientific publishers. Smith,

- J.E. (2005). *Biotechnology*. UK: Cambridge University press.
- 11. Wilson, K. & Walker, J. (2008). *Principles and Techniques of Biochemistry and Molecular Biology*. UK: Cambridge University Press.

Weblinks and Article References:

- 1. Thomson, J. (2011). Genetic Engineering Of Plants. https://www.semanticscholar.org/paper/GENETIC-ENGINEERING-OF-PLANTS-Thomson/e34c54c3c16d50c5180df80dd6b8993fc23851c6.
- 2. https://ndl.iitkgp.ac.in/
- 3. Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262-1278.
- 4. Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature protocols, 8(11), 2281-2308.
- 5. Mathur, R. (2018). Genetic engineering and biosafety in the use of genetically modified foods. IJASRM, 2018(I), 76-82.
- 6. Cahoon, E. B. (2003). Genetic enhancement of soybean oil for industrial uses: prospects and challenges. AgBioForum, 6(1&2): 11-13.

COURSE TITLE: PLANT TISSUE CULTURE

COURSE CODE: BOT-VI.E-13

MARKS: 100 (75 Theory +25 Practical)

CREDITS: 4 (3Theory +1 Practical)

COURSE DURATION: 45 HOURS

COURSE OBJECTIVES: To develop the plant tissue culture skills.

COURSE OUTCOME: Upon successful completion, the students will be able to:

CO 1: Explain and discuss the general theoretical backgrounds and practical techniques

CO 2: Describe, define, explain/ discuss, compare, concept of differentiation and culture types.

CO 3: Define, describe, explain/ discuss, techniques in PTC in media preparation, sterilisation, callus culture and organogenesis

CO 4: Describe, explain, discuss applications in forestry, agriculture etc.

Sr.No	TOPICS	Hours
	MODULE – I: INTRODUCTION AND DIFFERENTIATION CONCEPT	15
1.1	Scope and history of plant tissue culture, Laboratory organization.	
1.2	Culture techniques – Sterilization methods of glasswares, explant	
	preparation, sterilization, media composition and preparation.	
1.3	Cellular differentiation and totipotency; effect of growth regulators on	
	differentiation.	
	MODULE – II: CULTURE TYPES AND TECHNIQUES IN TISSUE CULTURE	15
2.1	Cell culture types- callus, single cell and suspension culture Organogenesis	
	and embryogenesis; Somaclonal variation; meristem culture, anther and	
2.2	Micropropagation, Germplasm conservation; Isolation and regeneration	
	of protoplasm; Somatic hybridization, Synthetic seeds,	
	Cryopreservation, secondary metabolite production.	
	MODULE- III: APPLICATION OF PLANT TISSUE CULTURE	15
3.1	Horticulture	
3.2	Agriculture	
3.3	Forestry	

TO	ΓAL	45

COURSE TITLE: PLANT TISSUE CULTURE (Practical)

COURSE CODE: BOT-VI.E-13

MARKS: 25 CREDITS: 1

COURSE DURATION: 15 SESSIONS

Sr. No	MODULE 4: Topics	Practical
		sessions
1	Preparation of MS Medium; Sterilization techniques	03
2	Embryo culture of maize	02
3	Callus induction and its morphological studies	04
4	Sub-culturing callus for rooting and shooting	03
5	Enzymatic Isolation of plant protoplast	01
6	Synthetic seed production	01
7	Visit to Plant tissue culture unit	01
	TOTAL	15

- 1. Bhojwani, S.S. (1990). *Plant Tissue Culture: Applications and Limitations*. USA: Elsevier Science Publishers.
- 2. Kumar, U. (1999). Methods in Plant Tissue Culture. Jodhpur: Agrobios.
- 3. Razdan, M. K. (2002). *Introduction to Plant Tissue Culture*. New Delhi: Oxford &IBH Publishing Co. Pvt. Ltd.
- 4. Satyanarayana U. (2013). Biotechnology. New Delhi: Books and allied (P) Ltd.
- 5. Vasil, I.K. and Thorpe, T.A. 1994. *Plant Cell and Tissue Culture*. Netherlands: Kluwer Academic Publishers.

COURSE TITLE: HORTICULTURE, FLORICULTURE AND LANDSCAPING (THEORY) w.e.fJune 2020

COURSE CODE: BOT-VI.E-14

MARKS: 100 (75 Theory +25 Practical) CREDITS: 4 (3 Theory +1 Practical

COURSE OBJECTIVES:

To provide entrepreneur opportunities.

COURSE OUTCOMES:

Upon successful completion of the course, students will be able to:

- To explain the basics of Horticulture, floriculture and landscaping.
- To outline the requirements for building up nurseries, garden, etc.
- To inculcate the technique of vegetative propagation of plants.
- To identify and relate the scope of these fields in building up career.

	TOPICS	Hours
Module	I: Introduction to Horticulture	
1.1	Definition and importance; scope of PomocultureOlericulture, Floriculture	15 hours
1.2	Fertilizers: inorganic, Organic – biofertilizers: vermin composting, green manure, algal culture, FYM.	
1.3	Pots & potting:— Earthen, Fibre, Polythene bags, Potting mixture, Potting, Re-potting, Top dressing.	
1.4	Irrigation:- Surface, Sprinkle, Drip and Gravity irrigation	
1.5	Use of plant growth regulators in horticulture: Induction of rooting, flowering, fruit set, fruit development and control of fruit crops.	

Modul	e II: Introduction to Floriculture and Propagation methods	15 hours
2.1	Knowledge of annual, biennials and perennials with reference to ornamental flowers.	
2.2	Cultivation of commercial flowers – Rose, Jasmine, Chrysanthemum., Crossandra& Orchid	
2.3	Nursery maintenance; Cut flowers; flower arrangements (including ikebana); improving shelf life of cut flowers. Green house, Poly house, Moist chamber, Net frame	
2.4	Sexual methods (seed propagation) – Definition, Merits and Demerits, Criteria for selection of seeds.	
2.5	Asexual (Vegetative) propagation – Definition, and types- Cutting (root, stem, leaf), Layering (simple, air), Grafting (Whip, Approach) and Budding (T, patch), Stock –scion relationship in important horticultural crops.	
Modu	ıle III: Introduction to Landscaping	15
3.1	Types of garden: Formal, informal and kitchen garden.	_
3.2	Locations in the garden- edges, hedges, fence, lawn, flower beds, Avenue, water garden (with two examples of each). Focal point. Auto CAD in garden designing	
3.3	National parks, Botanical gardens, water garden, rockery plants, Bonsai techniques, Hydroponics.	
3.4	Lawn making: type of lawn grasses and maintenance. Plants suitable for hedges. Aftercare: Weeding, top dressing methods of pruning and topiary	
	Total	45 hours

COURSE TITLE: HORTICULTURE, FLORICULTURE AND LANDSCAPING

COURSE CODE: BOT-IV.E-4

MARKS: 25 CREDITS: 1

Sr. No.	Module 4- Topics	Practical
1.	Preparation of nursery bed and polybag filling	01
2.	Preparation of potting mixture – Potting, repotting.	02
3.	Field work in cutting, grafting, budding, layering	02
4.	Garden designing using Auto CAD software/any app	01
5.	Familiarizing gardening tools and implements	01
6.	Preparation of organic compost&vermicompost	02
7.	Establishment of vegetable garden using organic compost &vermi-compost	03
8.	Flower arrangement	01
9.	Visit to nurseries, gardens and Report.	01
10	Improving the shelf life of cut flowers using chemicals	01
	Total	15

- 1. Swarup V. (1997). Ornamental horticulture. MaMillan India Limited, NewDelhi.
- 2. Randhava, G.S, 1973 Ornamental horticultural in India Today and Tomorrow Printers and Publishers, NewDelhi.

- 3. Trivedi TP (2007). Ornamental horticultural in India. Indian Council of Agricultural Research NewDelhi.
- 4. Nayak, K.C. South Indian fruits and their culture P.L. Varadaraj & Co., & Lingichetti Street, Madras.
- 5. Edment Senn Andrews 1994 Fundamentals of Horticulture Tata McGraw Hill Publishing Co., Ltd., Delhi.
- 6. Richard B, 'Pruning, Training & Topiary', Lorenz Books.
- 7. Sara Oldfield, Botanic Garden, New Holland Publishers UK Ltd.
- 8. Alan Titchmarshs gardening guides (1984), Lawns, Hamlyn.
- 9. Alan Titchmarshs gardening guides(1984), Bush Roses, Hamlyn.
- 10. Alan Titchmarshs gardening guides(1984), Climbing Plants, Hamlyn.

Web links:

- 1. http://agritech.tnau.ac.in/horticulture/horti_index.html
- 2. http://agritech.tnau.ac.in/horticulture/horti_flower%20crops.html
- 3. http://agritech.tnau.ac.in/horticulture/horti_nursery%20techniques.html

COURSE TITLE: ECONOMIC BOTANY (THEORY)

COURSE CODE: BOT-VI. E-15

MARKS: 100 (75 Theory+ 25 Practicals)

CREDITS: 4 (3 Theory+ 1 Practical)

COURSE DURATION: 45 HOURS

COURSE OBJECTIVES:

This course provides knowledge on the value of plants with scientific information and critical thinking to enhance economic botany.

COURSE OUTCOMES: Students will be able to

CO1: Identify and classify economically important plants/plant parts.

CO2: Extract valuable plant products of potential market and economic value.

CO3: Describe and create awareness of the uses of natural plant products

CO4: Understand and use plants as an alternative to synthetic and chemical products

Sr. No	TOPICS	Hours
Module 1: Origin of Cultivated Plants (Centres of Origin, Cereals & legumes)		15
1. 1	Centres of origin: Concept, Vavilov's work, examples of major plant	
	introductions; evolution of new crops/ varieties; crop domestication,	
	NRRI, CFTRI, SBRI	
1.2	Genetic diversity and its loss, Importance of germplasm	
1.3	Cereals: Wheat, Rice (local varieties) and Millets (any one)	
1.4	Legumes: Chick pea, Cow pea and one fodder legumes	
Module	2: Sources of sugars & Starch, Oils & Fats, Drugs & Natural Rubber	15
2.1	Sugar & Starch sources: Sugarcane ; Potato & Dioscorea	
2.2	Fat and Oil sources: Groundnut, Coconut, Soybean and; extraction and	
	applications of essential oils, Eucalyptus and mustard oils	
		<u> </u>

2.3	Therapeutic and habit-forming drugs: Cinchona, Cannabis;	
	Tobacco (Morphology, processing, uses and health hazards)	
2.4	Tapping, processing and uses of Hevea brasiliensis	
Mod	ule 3: Classification, general description and uses of Spices, & beverages,	15
	Fruit and Nuts, Fibers and Timber Plants	
3.1	Spices & condiments: Clove, Black pepper, cinnamon, turmeric	
3.2	Beverages: Tea & Coffee	
3.3	Fruits: Mango, Cashew & Jackfruit	
3.4	Fibers: Coconut, cotton & Jute.	
3.5	General account of Timber Plants: Teak and Matti	
		45

COURSE TITLE: ECONOMIC BOTANY (PRACTICAL)

COURSE CODE: BOT-VI.E-15

MARKS: 25

CREDITS: 1

COURSE DURATION: 15 SESSIONS

Sr. No	TOPICS	Practical
		Sessions
1	Morphological and Microscopic study of cereal and legumes seeds (rice and groundnut)	04
2	Study of essential oil yielding plants (Coconut, Eucalyptus, Citrus)	02
3	Mini Projects:	07
	i. Essential oil from plant sources	
	ii. Analysis of starch content from plant sources(fruits, rhizome, tubers)	
	iii. Analysis of plants for drugs, alkaloids and dyes	
	iv. Fibers from plants	
	v. Study of local fruits and spices	
4	Visit to a Spice Farm/ Rubber Plantation/ economically important plant farm	02
	Total	15

- 1. Kochhar, S.L. (2012). Economic Botany in Tropics. New Delhi: MacMillan & Co.
- 2. Wickens, G.E. (2001). *Economic Botany: Principles & Practices*. Netherlands: Kluwer Academic Publishers.
- 3. Chrispeels, M. J. and Sadava, D. E. (1994) *Plants, Genes and Agriculture*. Jones & Bartlett Publishers.
- 4. Subrahmanyam, N. S. and Sammbamurty, A.V.S.S. (2008). *A textbook of Modern economic Botany*. New Delhi: CBS Publishers & Distributors.
- 5. Pandey, B. P. (2015). Economic Botany. New Delhi: S. Chand & Company.

COURSE TITLE: APPLIED MYCOLOGY (THEORY)

COURSE CODE: BOT-IV.E-16

MARKS: 75 CREDITS: 3

COURSE OBJECTIVES:

This paper provides knowledge on culture techniques and the applicative aspects of fungi.

COURSE OUTCOMES: The students be able to:

- To explain techniques involved in sampling, culturing and maintaining fungal cultures.
- To discuss industrial and agricultural applications of fungi.

Sr.No.	TOPICS	Hours
Module	e 1: Introduction and Fungal Culture studies	15
INTRO	DUCTION	
1.1	General account of fungi. Microscopic structure, Chemical	
	composition and understanding of fungal cell wall	
1.2	Environmental factors influencing fungal growth	
STUDI	ES OF FUNGAL CULTURE	
1.3	Introduction to culture collections, Culture Media formulations and	
	types of media used in mycology. Culture databases.	
1.4	Various techniques for pure culture isolation and maximum recovery	
	from different habitats (Soil, Litter, Water, Dung)	
	Baiting, moist-chamber and particle-plating techniques	
1.5	Isolation of pure cultures and maintenance.	
1.6	Study of colony characters and growth patterns	
1.7	Fungal gene banks- Culture Collection Centres.	
Module	e 2: Industrial Mycology	
INDUS	TRIAL MYCOLOGY	15
2.1	Role of fungi in biotechnology	
2.2	Applications of fungi in food industry	
	Flavour and texture	
	Fermentation and baking	

	O	
	Organic acids (Preferably Citric acid)	
	Enzymes (Preferably Cellulases and Pectinases)	
	Mycoproteins- SCP (Yeast)	
2.3	Endophytic fungi and its industrial applications.	
Modul	e 3: Fungi in Agriculture, medicine and recent mycological	15
advanc	ees.	
FUNG	I IN AGRICULTURE	
3.1	Fungi as biofertilizers (Preferably Trichoderma)	
	Fungi as biocontrol agents- Mycofungicides, Mycoherbicides,	
	Mycoinsecticides	
3.2	Mycorrhizae and its role	
3.3	Medical mycology - Secondary metabolites- Pharmaceutical	
	preparations from fungi, antibiotics from fungi. (Preferably	
	Penicillium and Ganoderma)	
MUSH	ROOM CULTIVATION & RECENT ADVANCES IN	
MYCC	DTECHNOLOGY	
3.4	Mushroom cultivation techniques: Oyster and Button mushrooms.	
3.5	Applications of PCR and other molecular techniques in mycology,	
	Mycoinformatics, Mycoremediation	
	TOTAL	: 45 Hours

COURSE TITLE: APPLIED MYCOLOGY (PRACTICAL)

COURSE CODE: BOT-IV.E-8

MARKS: 25 CREDITS: 1

Sr. No.	MODULE 4: TOPICS	Practicals
1.	Isolation and preparation of pure culture from a mixed culture plate on solid medium.	02
2.	Preparation of moist chamber and incubation of fungi	01
3.	Particle dilution plating for fungi	01
4.	Isolation of endophytic fungi from plant leaves	01
5.	Study of effect of incubation temperatures and pH on fungal growth	02
6.	Colorimetric estimation of cellulase and amylase produced by fungi	02
7.	Production of Citric acid (using <i>Aspergillus</i>) in broth and testing for its presence.	02
8.	Mushroom cultivation- Oyster mushrooms and its protein estimation	03
9.	Understanding structures of fungal enzymes using Bioinformatics tools.	01
	TOTAL	15

- 1. Aneja, K. R. (2007) Experiments in Microbiology Plant Pathology & Biotechnology. 5th ed., New Age International Publishers.
- **2.** Bhat, D. J. (2010) Fascinating Microfungi (Hyphomycetes) of Western Ghats India. First edition., Broadway Book Centre, Goa.
- **3.** Powar, C.B. and Daginawala, H.F.(1982) General Microbiology–Volume II. Himalaya Publishing house: Bombay.
- **4.** Prescott, L. M. (2005) Microbiology. 6th ed., Mc Graw-Hill.
- 5. Shivkumar, P.K., Joe, M.M. &Sukesh K.(2010) An Introduction to Industrial Microbiology. 1st ed., S.Chand& Company Pvt. Ltd.
- **6.** Trivedi, P.S. and Pandey, S.N. (2009) A Textbook of Botany. Volume I. Vikas Publishing House Pvt Limited, New Delhi.

COURSE TITLE: BIORESOURCE MANAGEMENT W.e.f. July 2022

COURSE CODE: BOT-III.SEC-1

MARKS: 100 CREDITS: 4

DURATION: 60 HOURS COURSE OBJECTIVES:

Objective of this paper is to provide introductory and practical knowledge on wine preparation, mushroom cultivation and spices and condiments and to develop professional skills in the given areas.

COURSE OUTCOMES:

Upon successful completion of the course, students will be able:

CO1: Learn about the varieties of fruits used for the wine preparation.

CO2: Understand the basic elements of wine fermentation, responsible organisms and process of wine production.

CO3:The course aims at developing skills and making the students become self-reliable and employable.

CO4: They are able to work in a mushroom farm / industry and research laboratory.

CO5: Identify and classify important plants/plant parts.

CO6: Extract valuable plant products of potential market and economic value.

	UNITS, TOPICS AND SUB-TOPICS	HOURS
	Module 1: INTRODUCTION TO BIORESOURCES	15
1.1	Definition, types, importance and scope of bioresources, sustainable uses, value added products in the market	
1.2	Basics of wine making: History and culture of wine, Classification of wine: Generic classification, varietal classification, Grape variety as criteria for quality wine production	
1.3	Organic wines: Organic viticulture and wine-making practices	
1.4	Traditional and commercial wine-making: A comparison of traditional and new wine-making practices.	

		İ
1.5	Barrel aging, clarification, fining, settling, cold stabilization, filtering, blending, bottling, closure systems	
1.6	Economic importance of winemaking	
1.7	Wine marketing	
	MODULE II: PRODUCTION OF WINE	15
2.1	Wine preparation: fermentation, microorganisms, raking, tasting	
2.2	Preparation of wine using various fruits like apple, chickoo, ginger, guava, grapes, mango, pineapple, pomegranate, carrot, orange, dates, rose, watermelon, jamun, garcinia etc.	
	MODULE III – Mushroom Cultivation	15
3.1	Introduction, history and scope, Edible and non-edible mushrooms (Poisonous). Mushroom classification based on occurrence, habitat, color, morphology, fruit bodies.	
3.2	Biology and Life cycles of specific mushrooms (any one). Nutritional value and medicinal importance of mushroom, value added products of mushroom.	
3.3	Cultivation Technology: Mushroom laboratory; infrastructure- facilities and materials; Substrates (locally available - paddy straw, sugarcane trash, maize straw, banana leaves), Mushroom bed preparation (Composting technology, platform, equipment & facilities); pasteurization room & growing rooms. Mushroom spore isolation & spore culture; Culture media (PDA medium, Malt extract agar medium); Preparation of spawn-substrate, sterilization, multiplication & storage.	
3.4	Visit/demo/virtual study of button mushroom cultivation.	
	MODULE IV: MANAGEMENT OF OTHER BIORESOURCES	15
4.1	General description, processing, post-harvest practices and uses of Spices & condiments: chillies, clove, black pepper, cinnamon, turmeric, nutmeg.	10
4.2	General description, processing, post-harvest practices and uses of vanilla and coconut and cashew.	
4.3	Visit to farms/processing units.	

	TOTAL	60
--	-------	----

REFERENCES:

- 1. Jackson, R.S. 2014. Wine Science: Principles and Applications, 4th Edition. Elsevier Academic Press, London, UK, ISBN-13: 978-0123814685.
- 2. Johnson, H. and Robinson, J. 2013. The World Atlas of Wine, 7th Edition. Mitchell Beasley, London, UK, ISBN-13: 978-1845336899.
- 3. <u>Ribéreau-Gayon, P., Glories, Y., Maujean, A., and Dubourdieu, D.</u> 2006. Handbook of Enology: The Chemistry of Wine Stabilization and Treatments, Volume 2, 2nd Edition. John Wiley & Sons, Ltd.
- 4. Marimuthu, T., Krishnamoorthy, A.S., Sivaprakasam, K., & Jayarajan, R. (1991). Oyster Mushrooms. Coimbatore, TN: Department of Plant Pathology, Tamil Nadu Agricultural University.
- 5. Swaminathan, M. (1990). Food and Nutrition. Bengaluru: The Bangalore Printing and Publishing Co. Ltd.
- 6. Subrahmanyam, N. S. and Sammbamurty, A.V.S.S. (2008). *A textbook of Modern economic Botany*. New Delhi: CBS Publishers & Distributors.
- 7. Pandey, B. P. (2015). Economic Botany. New Delhi: S. Chand & Company.
- 8. V. Verma (2009) Textbook of Economic Botany Published by ANE Books

Web references:-

- 1. https://winefolly.com/deep-dive/how-is-red-wine-made/
- 2. https://www.winemonthclub.com/the-wine-making-process
- 3. https://onlinecourses.swayam2.ac.in/nos20_ge07/preview
- 4. https://nios.ac.in/departmentsunits/vocational-education/stand-alone-courses/oyster-mushroom-production-technology.aspx
- 5. https://agricoop.nic.in/sites/default/files/ICAR_8.pdf
- 6. https://kvknorthgoa.icar.gov.in/litpub/Technical%20Folders/Plant%20Protection/Oyster%20Mushroom%20Cultivation.pdf
- 7. https://nios.ac.in/media/documents/vocational/mushroom_production_(revised)(618)/Lesson-01.pdf