MINUTES OF THE BOS (Board of Studies) MEETING

Mathematics

Board Of Studies Meeting in Mathematics was held on 21st February 2020.

Following members were present.

- 1] Anand Masur
- 2] Rovan Vaz
- 3] Sunil Harmalkar
- 4] Cera Fernandes
- 5] Ankita Desai
- 6] Meetal Raikar
- 7] Dr. Milind Kulkarni
- 8] Dr. Stefan Dais Barrato
- 9] Dr. Rajeev Sapre
- 10] Devayani Nitturkar
- Following had informed about their absence.
- 1] Danielle Montero
- 2] Dinkar Sathe

The meeting commenced with Anand Masur, the Chairman of BOS welcoming all the attendees.

- The Agenda was
- A] To discuss and approve new course structure
- B] To discuss and approve new syllabi of Analysis
- C] To discuss and approve two SEC
- D] To discuss and approve list of Minor courses.
- E] To discuss and approve restructured Statistics courses.

Following resolutions were passed

- A) Two Skill enhancement courses were approved.
 - 1. Differential Equations (For even sem.)
 - 2. Operations Research (For odd sem.)

B) Analysis Syllabi in four parts was approved.

- C) Rearrangement of courses across the semester was approved.
- D) List of Minor courses was approved.

Approved Syllabus and rearranged course structure.

Basic Real Analysis

Aim:- To introduce number system with its geometrical properties and axioms of real numbers.

Course outcome:- After completion of this course students will be able to

1] relate geometry with real number system.

2] use axioms of real numbers in analysis.

- 3] draw and recognize graphs of some elementary but important functions.
- 4] use technical terminology and some basic tools in analysis.

1] Numbers :- Simple Algebraic development from Natural numbers to Real numbers. (5)

2] Geometry of Real numbers :- Representation of real numbers on a line, Tricotomy Law, Order on R, Archimedes property, Hausdorff property, distance concept: absolute value (all inequalities ex. Triangle inequality). Subsets of R : bounded-unbounded sets, bounded sets, lub. glb. Completeness axiom, intervals, open-closed intervals, open/closed nbd. of a point, limit points, dense set (Q and Q' only), concept of infinity, (15)

3] Functions :- Examples with graphs (log , a^x,xⁿ, trigonometric functions, step function, absolute value function, polynomial / rational functions, signum function.) Inverse function:-How /why to restrict domain/ co-domain (range), graphs of inverses of above functions, Compositions, addition, product of functions. (7)

4] Sequences:- definition, examples, convergence/ divergence of sequence, types of sequences, Cauchy sequences, Sub sequences, absolute convergence, all theorems, Bolzano Weierstrass theorem. (17)

5] Series :- Definition, Examples, alternate series, Convergence, Cauchy criteria, absolute convergence, rearrangement of series, All theorems for testing the convergence (absolute and non absolute), (17)

Mathematical Analysis- I

Aim:- To introduce two important families of functions (continuous and differentiable)

Course Outcome:- After completion of this course students will be able to

1] use the properties of continuous (differentiable) function to solve problem in real life

situation.

2] illustrate and reproduce all theorems and properties continuous (differentiable) functions.

1] Continuous functions:- Limit of a function (Limit at ∞ and lim ---> ∞), Algebra of limits, continuous functions(ε - δ definition), types of discontinuity, sequential continuity, continuous functions on closed and bounded intervals, their properties, All results of continuous function, IVT and bisection method to find root of a continuous functions, uniform continuity, (25)

2] Differentiable functions :- Definition, properties, theorems, increasing/decreasing functions, Taylor's theorem, Newton's Method, L'Hospital's rules, maxima-minima, MVTs. , convex / concave functions, singular points. (25)

3] Use of differentiation in Physics, Economics and other subjects. (10)

Mathematical Analysis- II

Aim:- To introduce one more family of functions, Integrable functions.

Course outcome:- After completion of this course students will be able to

- 1] Identify Integrable functions.
- 2] Classify and evaluate improper integrals.
- 3] Integrate functions numerically.

1] Riemann integrals:- Tagged partition, Riemann sum, Riemann integrable functions, some simple results on integrable functions using Riemann sum. (10)

2] Darboux integrals:- Upper/lower sum, integrable function, Riemann criteria of integrable function, classes of integrable functions, (15)

3] Fundamental theorems of integration and their applications (chain rule, substitution and product rule theorems) (12)

4] Improper integration (type I, type II and type III), α and β functions. (8)

5] Numerical integration – Quadrature Rules, Trapezoidal, Mid-point, Simpson's and Weddle's rules of integration. (15)

Advance Analysis

Aim:- To introduce some approximations of continuous/differentiable functions.

Course outcome :- After completion of this course students will be able to

1] Analyze sequence and series of functions.

2] Use some basic techniques to represent continuous functions as polynomials.

1] Sequence of functions:- convergence, uniform convergence, interchange theorems. (15)

2] Series of functions:- Convergence, uniform convergence, interchange theorems. Power series and their radius of convergence, Cauchy-Hadamard theorem, Differentiation and uniqueness theore. (15)

3] Some special functions.(exponential, logarithmic and trigonometric) (12)

4] Continuity and Gauges, δ -fine partition, step function, inverse function theorem, Weierstrass approximation theorem (using Bernstein polynomials), Dini's theorem. (18)

	Core	Core				
Sem-	Basic	Basic Real				
Ι	Algebra	Analysis				
Sem-	Coordinate	Mathematical				
Π	Geometry	Analysis-I				
			Elective-I	Elective-II	Elective-III	Elective-IV
Sem-		Mathematical	Abstract	Number	Combinatorics	Numerical
III		Analysis-II	Algebra-I	Theory-I		Methods
Sem-		Linear Algebra	Advanced	Number	Cryptography	Probability
IV			Analysis	Theory-II		Theory
Sem-		Functions of	Metric	Differential	Graph Theory	Pedagogy of
V		Several	Spaces	Equations-II		Mathematics
		Variables				
Sem-		Vector Analysis	Complex	Abstract	Computational	Computers for
VI			Analysis	Algebra-II	Linear Algebra	Mathematics

New Course Structure is as follows

Apart from this Two Skill Enhancement Courses

1] Differential Equation-I in ODD SEMESTER

2] Operations Research in EVEN SEMESTER

Course Structure for Mathematics Minor

Semester	Core (Minor)
Ι	Basic Algebra
II	Coordinate Geometry
III	Basic Real Analysis
IV	Mathematical Analysis-I / Linear Algebra
V	Graph Theory / Numerical Methods
VI	Probability Theory/ Vector Calculus

MINUTES OF THE BOS (Board of Studies) MEETING

Statistics

Board Of Studies Meeting in Mathematics was held on 21st February 2020.

Following members were present.

- 1] Anand Masur
- 2] Rovan Vaz
- 3] Sunil Harmalkar
- 4] Cera Fernandes
- 5] Ankita Desai
- 6] Meetal Raikar
- 7] Dr. Milind Kulkarni
- 8] Dr. Stefan Dais Barrato
- 9] Dr. Rajeev Sapre
- 10] Devayani Nitturkar
- Following had informed about their absence.
- 1] Danielle Montero
- 2] Dinkar Sathe

The meeting commenced with Anand Masur, the Chairman of BOS welcoming all the attendees.

The Agenda was

Rearranged and enhanced Statistics courses was approved.

	Core	Core				
SEM - I	Basic Analysis	Combinatorics -				
		Ι				
SEM – II	Mathematical	Probability				
	Analysis	theory				
			Elective-I	Elective-II	Elective-III	Elective
						-IV
SEM – III		Testing of	Applications of	Statistical	Numerical Methods	
		hypothesis	Probability	Estimation.		
		•	Distributions			
SEM - IV		Linear Algebra	Design of	Decision theory	Operations Research	

Course Structure for Statistics

		experiments and sampling	and anova		
SEM – V	Graph Theory	Stochastic Process	Applied GIS	Python	
SEM - VI	Statistical Graph Theory	Practical -I	Practical-II	Matematical Finance (On Line.)	

SUGGETIONS GIVEN BY THE MEMBERS.

Two more courses were suggested as SEC

[1]Courses in Applied Statistics (introduce Computer Components)

[2]Single variable Calculus

- Courses Suggested by the Experts nominated by the academic council
 - 1. Industrial mathematics (calculus, programming, data base management, application of mathematics)
 - 2. Financial Mathematics
 - 3. Bio-mathematics
 - 4. Foundation of mathematics (history of mathematics)
 - 5. Boolean Algebra with logic (include predicate calculus, proportionality Calculus & applications)
 - 6. Fourier Courses
- Suggestions by the Experts nominated by the academic council
 - 1. Giving importance to Application of Mathematics.
 - 2. Teach Discrete Mathematics as a full course.
 - 3. Introduction of Operation Research-II Course in Semester VI.
 - 4. Inclusion of path connectedness In Metric Space Course.
 - 5. To get visiting faculty in specialized courses.

Vote of thanks was given by Professor Anand P. Masur.

(prepared by Cera Fernandes)