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Highlights 

 We have developed an automated tool, Fatquant, for identification of fat cells based on 

its diameter in hematoxylin and eosin tissue sections such as pancreas, liver which can 

aid the pathologist for diagnosis of fatty pancreas and related metabolic conditions. 

Fatquant is unique as current fat automated tools (adiposoft, adipocount) works well for 

homogeneous white fat tissue but not for other tissue samples. The currently available 

liver, pancreas analysis tool are either deep learning based, require training datasets 

unlike Fatquant or are not open source software. 
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Abstract 

Fatty infiltration in pancreas leading to steatosis is a major risk factor in pancreas transplantation. 

Hematoxylin and eosin (H and E) is one of the common histological staining techniques that 

provides information on the tissue cytoarchitecture. Adipose (fat) cells accumulation in pancreas 

has been shown to impact beta cell survival, its endocrine function and pancreatic steatosis and 

can cause non-alcoholic fatty pancreas disease (NAFPD). The current automated tools (E.g. 

Adiposoft) available for fat analysis are suited for white fat tissue which is homogeneous and 

easier to segment unlike heterogeneous tissues such as pancreas where fat cells continue to play 

critical physiopathological functions. The currently, available pancreas segmentation tool 

focuses on endocrine islet segmentation based on cell nuclei detection for diagnosis of pancreatic 

cancer. In the current study, we present a fat quantifying tool, Fatquant, which identifies fat cells 

in heterogeneous H and E tissue sections with reference to diameter of fat cell. Using histological 

images  from a public database, we observed an intersection over union of 0.797 to 0.962 and 

0.675 to 0.937 for manual versus Fatquant analysis of pancreas and liver, respectively.  
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Highlights 

We have developed an automated open source software Fatquant, for identification of fat cells 

based on its diameter in hematoxylin and eosin tissue sections such as pancreas, liver which can 

aid the pathologist for diagnosis of fatty pancreas and related metabolic conditions. Fatquant is 

unique as current fat automated tools (adiposoft, adipocount) works well for homogeneous white 

fat tissue but not for other tissue samples. The currently available liver, pancreas analysis tool is 

either deep learning based, require training datasets unlike Fatquant or are not open source 

software.  

Graphical Abstract 

 

Currently available fat quantification tools like Adiposoft can analyze homogenous fat tissue 

(left) with intersection over union (IoU) of 0.935 and 0.954 with Adiposoft and Fatquant, 

respectively. While in heterogenous tissue (e.g. pancreas on right) which contains  fat cells, 

acinar cells, Adiposoft fails to detect fat cells with IoU=0 while Fatquant had IoU=0.797. 

1. Introduction 
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The accumulation of fats especially in the abdominal area causes insulin resistance, deposition of 

fats (steatosis), inflammation, fibrosis in the pancreas leading to non-alcoholic fatty pancreatic 

disease (NAFPD). The consequence of pancreatic fat infiltration might provoke a decrease in 

endocrine (β‐cell) number, function leading to more rapid progression to diabetes with NAFPD 

suggested as an early marker of glucometabolic disturbance [1]. Whole or islet pancreas 

transplantation simultaneously with kidney or after kidney transplant in comorbidity are some of 

the known methods to treat adult type 1 diabetes (T1D) [2], however, surgical, 

immunosuppression [2] and fat infiltration in pancreas are some of the risk factors that can affect 

the clinical outcome [3,4]. Fatty pancreas has a prevalence of 35% and may lead to pancreatitis, 

diabetes mellitus or pancreatic cancer [5,6]. 

Pancreatic steatosis can be diagnosed on ultrasound, computed tomography (CT) scan or 

magnetic resonance imaging (MRI) but pancreatic biopsy remains best method to detect 

pancreatic fat concentration [5,7]. The histological and MRI tools exhibit good agreement in 

detecting fat in pancreas [8,9] but the latter cannot show fat accumulation at the cellular level 

and is expensive. Hematoxylin and eosin (H & E) is a widely used histological tissue staining 

technique for medical diagnosis and scientific research. Hematoxylin stains cell nuclei blue 

while eosin stains the cytoplasm and connective tissue pink thus allowing microscopic 

differentiation of tissue cytoarchitecture in sections. The analysis involves manual examination 

by pathologist to ascertain presence/absence of disease markers and or grading of disease 

progression which is semi-quantitative and subjective in nature
 
[10].  

To complement the current manual assessment, several digital tools have been developed such as  

Adiposoft [11], and AdipoCount [12] which works well for homogeneous white fat tissue 

(Figure 1). However, they cannot efficiently identify fat cells in H and E tissues such as pancreas 

or liver due to presence of a mixture of various cells and structures complicating the fat boundary 

detection which is one the earliest steps in cell segmentation [13]. Such tool developed based on 
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nuclear displacement and lipid droplet size analysis have been reported for automated analysis of 

fat cell infiltration (steatosis) in H and E liver images [14]. Unlike liver tissue, where fats 

accumulate in hepatocytes, in pancreas fat infiltration and deposition occurs both in acinar and 

islet cells [15].  

Usually, these algorithms involve splitting the image into various color channels with the red 

channel binarized using automatic thresholding method to separate the bright pink fat areas from 

dark purple-bluish cell nuclei. Subsequently, a watershed algorithm is applied to fillup missing 

fat cell membrane and improves cell count [11,12]. The output of these processes includes the 

labels and statistical analysis of individual cells. These tools have been successfully applied to 

white fat tissue, however, other organs like liver, pancreas, lungs have been challenging due to 

heterogeneous cell types (Figure 2). 

 

 

 

 

Figure 1-Homogenous fat tissue 

 

 

Figure 2-Heterogenous pancreatic 

tissue with fat and acinar cells 

 

Pancreas is a heterogenous tissue and manual analysis of regions is a tedious process that lacks 

reproducibility [16]. The existing methods of pancreatic islet segmentation depends on cell 

nuclei detection, then a classifier is applied to recognize different cell types but is based on 

assumption that islets have high density cells [17,18]. Recent studies have utilized a supervised 
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learning framework for islet segmentation in H & E stained pancreatic images to partition images 

into superpixels and extract color-texture features, process them, and finally a linear support 

vector machine is trained and applied to segment testing images [19]. Moreover, QuPath 

software allows identification of endocrine islet cells in immunofluorescent images of pancreas 

tissue [16]. In the current study, we have developed an automated tool, Fatquant, in which the fat 

cells were identified in processed images by calculating the diagonal of a square circumscribed 

by circle. 

 

2. Materials and Methods 

The H and E images for the analysis were downloaded from the Genotype-Tissue Expression 

(GTEx) public portal (Broad Institute, Cambridge, MA, USA) using the Histology Viewer tool 

[20]. The GTEx tissue image library contains high-resolution histology images for various tissue 

types from several postmortem donors. Spherical or oval white spaces were categorized as fat  

cells while large and irregular white spaces were grouped as artifacts. A sample size of ten each 

pancreas histology images with  subject IDs GTEX-11DXZ-0826, GTEX-1122O-0726, GTEX-

1117F-1726, GTEX-117YW-0926, GTEX-13PVQ-2026, GTEX-13FHP-1926 and GTEX-

11WQC-0926 and liver histology images with subject ID 11EMC-0326, 11EQ9-0526, 11GS4-

0926, 11GSO-0826, 11NV4-1326, 11O72-0926 were analyzed. Each subject ID denotes unique 

individuals (7 for pancreas, 6 for liver), while remaining were random images with varying fat 

percentage and distinctive neighboring cell. The images have magnification of 20x (0.4942 

mpp—microns per pixel) [21]. The sample images were taken using the Snapshot tool of Aperio 

ImageScope software. The source code was written in Python version 3.8.0 (Python Software 

Foundation, Beaverton, Oregon, USA) with Core i7 3rd Generation CPU, 12 GB RAM and Intel 

HD graphics 4000 GPU.  

2.1. Data and code availability 
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All the images, annotations along with relevant data code can be found at the following GitHub 

repository: https://github.com/anniedhempe/Fatquant. The procedure to run this tool is 

mentioned in the Readme file. In addition, we have provided a GUI version of Fatquant tool 

along with tutorial at the repository: https://github.com/nehalkalita/Fatquant-GUI 

2.2. Image processing 

 

Figure 3: Flowchart depicting the image processing. 

The procedure for image processing is briefly demonstrated in the flow chart shown in Figure 3.  

 

The steps used are elaborated below. 

 

Figure 4 

 

Figure 5 

Figure 4 is a sample raw image of dimension 1716 x 905 pixels from  subject ID GTEX-11DXZ-
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0826. Analysis on this image is referred while explaining the image processing steps. Figure 5 is 

an altered form of the image in Figure 4 where the valid fat cells are manually tagged with 

yellow color (RGB: 255, 255, 0). 

2.2.1. Binary thresholding of input image 

 

Figure 6 

 

Figure 7 

The color of fat cells in images from GTEX portal ranges approximately between 225 to 255 

grayscale values. There can also be other parts of pancreas which has the same range of color. 

But applying binary threshold on an image can help in getting rid of many unwanted parts. The 

pixels of an image whose color values are at least equal to the input parameter value of threshold 

(e.g. 227) are taken into consideration for further processing and are assigned a new grayscale 

value 255. The other pixels are assigned value 0. Figure 6 is a thresholded image of Figure 4 

with parameter value 230. Figure 7 is also a thresholded image but of Figure 5 where pixels 

representing the tagged fat cells are assigned grayscale value 255 and the rest is assigned value 0. 

2.2.2. Segmentation of white pixels from thresholded image 

White pixels are initially segmented by combining tile rendering with scanline rendering and 

then identifying possible merge of segments in a tile with their immediate neighbors. Tile 

rendering has been implemented in this system as it helps in reducing time complexity for 

segments covering large area.  

Processing time for segmentation was tested with four sizes of square tiles, which were of length 

35 pixels (processing time: 24.23 seconds), 50 pixels (processing time: 15.32 seconds), 70 pixels 
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(processing time: 12.88 seconds) and 100 pixels (processing time: 15.37 seconds). In this 

experiment, tile size of 70 pixels was used for analyzing all the images since it took the least 

amount of time. 

After an input image is divided into multiple tiles, scanline rendering is performed within each 

tile to identify white pixels and form possible segments with their neighbors on left or top. In this 

experiment, left neighbors are given first preference. Once scanline rendering is performed till 

the last row of a tile then the identified segments are merged on the basis of their vertical 

neighbors. Segments which have only diagonal neighbors with another segment and not vertical, 

are not merged. 

Figure 8 is a diagrammatic representation of segmentation performed on a square tile of length 

15 pixels. Figure 8 (a) represents a thresholded image where segmentation is to be performed. 

Figure 8 (b) shows six segments created while iterating once till the last row. Figure 8 (c) shows 

total segments getting reduced to four due to merging. 

  

Figure 8 (a) 

 

Figure 8 (b) 

 

Figure 8 (c) 

Figure 9 shows segments within tiles and the magnified part is one tile. Figure 10 shows fully 

merged segments of the thresholded image and varying colors (non-black) in it represent 

different segments. 
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Figure 9 

 

Figure 10 

2.2.3. Selection and quantification of fats from white segments 

The system uses a square matrix of pixels to select probable valid segments. The matrix as per its 

dimension collects serially arranged group of neighbouring pixels across X, Y coordinates. Using 

this matrix, the system scans through a dimension of pixels for identifying fats. This dimension 

is the smallest dimension that encompasses all the segments. The matrix's location for scanning 

is only updated by one pixel (horizontally or vertically) in each iteration. So, determining the 

smallest dimension for traversal reduces time complexity. The dimension is determined by 

identifying positions of first white pixels in thresholded image from every direction i.e. top, 

bottom, left and right. These four positions denote maximum coverage of segments in each 

direction. Figure 11 is a diagrammatic representation of the method discussed where the red 

colored rectangle represents smallest dimension.  
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Figure 11 

 

The square matrix is supposed to only collect pixels within the boundaries of valid segments (i.e. 

white pixels). The side length of that square is determined by input fat diameter values 

(minimum or maximum) as these diameters equates to diagonal of that square. Side length of a 

square, can be calculated as: 

s = d divided by square root of 2. 

 
 

 

  

 

 , where s = square side length; d = diameter. This square can be assumed as the largest square 

that can get inscribed in a circle of given diameter. A set representing an elliptical shape which is 

equivalent of a matrix representing a square shape may be a more precise choice for identifying 

fats but since matrix is easier to handle so it has been chosen. 

The system refers to a minimum diameter value to select segments where a square matrix having 

side length as per this diameter can fit somewhere in their regions. Then the system refers to a 

maximum diameter value to discard segments from the selected list where a matrix having side 

length as per this diameter can fit somewhere in their regions. This means a segment which has 

narrow areas in many of its portions, but has very wide area in one of its portion can also get 

discarded if a square matrix as per the maximum diameter can fit in that portion. Figure 12 is a 

diagrammatic representation of this process performed on an image of dimension 15 x 15 pixels. 

Figure 12 (a) has seven segments with White colored pixels out of which valid segments are to 

be selected. Figure 12 (b) has three segments marked with Cyan color which denotes segments 
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getting selected as per minimum diameter. The matrix size is of length 3 pixels. So, four 

segments do not get selected as the square matrix fails to fit inside the boundary of any of these 

segments. Figure 12 (c) has only two segments marked with Cyan color which denotes selected 

segment getting discarded as per maximum diameter. Here the matrix size is of length 4 pixels. 

So, a segment which can fit a matrix of length greater than 4 pixels is to be discarded. The 

previously selected segment which gets discarded could fit a matrix of length 5 pixels. Figures 

13 (a) and (b) are outputs generated from the sample image with minimum (27 pixels) and 

maximum (130 pixels) diameter respectively. The identified fats are marked with Cyan color 

(RGB: 0, 255, 255). 

  

Figure 12 (a) 

 

Figure 12 (b) 

 

Figure 12 (c) 

 

  

Figure 13 (a) 

 

Figure 13 (b) 

2.2.4. Removal of fats from boundary 

Segments which are identified as fats but also contain pixels from boundary are discarded 

because their entire size is not known within the dimension of input image (Figure 14). While 

comparing Figure 14 with Figure 13 (b), it can be seen that some segments which contain pixels 

from bottom boundary gets discarded.  
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Some of these segments may even get discarded while selecting segments as per diameter. E.g. 

in Figure 13 (b), one big segment which has pixels in boundary gets discarded after considering 

maximum diameter area, whereas the segment is present in Figure 13 (a). 

 

Figure 14: Fat cell removed from peripheral boundary. 

Removing fats from boundaries is the final step for tagging fats using fatquant. If users do not 

have manual tagged data of fat cells then they can conclude the experiment after this step.  

2.2.5. Analysis of valid fats 

The fatquant tagged fat segments are compared with manually tagged fat segments to check the 

validity of our image analysis algorithm. If fatquant and manually tagged segments have pixels 

in common then, those pixels are considered as valid.  The accuracy of the output is calculated in 

terms of Intersection over Union (IoU) where ‘Intersection’ means area of overlap of ground 

truth data with machine detected data & ‘Union’ means area of union of ground truth data and 

machine detected data. Its value ranges from 0 to 1, where value ‘0’ indicates no overlap and 

value ‘1’ indicates complete overlap. The formula used in our algorithm is: 

   
 

  

        
 

, where TP = True Positive; FP = False Positive; FN = False Negative. TP is the intersection of 

fatquant and manually tagged pixels, FP are the pixels which are tagged by fatquant but do not 

become part of the intersection (i.e. Fatquant Tagged Area - TP) and FN are the pixels which are 

manually tagged but do not become part of the intersection (i.e. Manual Tagged Area - TP). 
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Figure 15 

Figure 15 is the output generated after comparing Fatquant and manual tagged fats. The Light 

Green colored pixels (RGB: 127, 255, 127) represents TP, Cyan color represents FN and Yellow 

color represents FP. Fatquant tagged, manual tagged and TP areas are 130,816, 111,300 and 

110,429 pixels respectively. Hence as per the parameters used while demonstrating the steps, the 

IoU value is 0.838 but it can increase if parameters are changed or a better manual tagged image 

is referred. 

3. Results 

Fat cell identification on ten sample images each of pancreas and liver dimension 1716 x 905 

pixels was performed using Adiposoft and Fatquant tools. When analyzing through Adiposoft, 

microns per pixel value was set to 0.4942 based on their known 20x magnification [21]. The 

outputs are shown below. 
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Figure 16 (a)-Raw image 

 

 

Figure 16 (b)-Tagged image 

 

Figure 16 (c)-Adiposoft 

 

Figure 16 (d)-Fatquant 

 

 

Figure 17 (a)- Raw image 

 

 

Figure 17 (b)- Tagged image 

 

Figure 17 (c)- Adiposoft 

 

Figure 17 (d)-Fatquant 
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Figure 18 (a)- Raw image 

 

 

Figure 18 (b)- Tagged image 

 

Figure 18 (c)- Adiposoft 

 

Figure 18 (d)-Fatquant 

 

 

Figure 19 (a)- Raw image 

 

 

Figure 19 (b)- Tagged image 

 

Figure 19 (c)- Adiposoft 

 

Figure 19 (d)-Fatquant 
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Figure 20 (a)- Raw image 

 

 

Figure 20 (b)- Tagged image 

 

Figure 20 (c)- Adiposoft 

 

Figure 20 (d)-Fatquant 

 

 

Figure 21 (a)- Raw image 

 

 

Figure 21 (b)- Tagged image 

 

Figure 21 (c)- Adiposoft 

 

Figure 21 (d)-Fatquant 
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Figure 22 (a)- Raw image 

 

 

Figure 22 (b)- Tagged image 

 

Figure 22 (c)- Adiposoft 

 

Figure 22 (d)-Fatquant 

 

 

Figure 23 (a)- Raw image 

 

 

Figure 23 (b)- Tagged image 

 

Figure 23 (c)- Adiposoft 

 

Figure 23 (d)-Fatquant 

 

                  



19 

 

Figure 24 (a)- Raw image 

 

 

Figure 24 (b)- Tagged image 

 

Figure 24 (c)- Adiposoft 

 

Figure 24 (d)-Fatquant 

 

 

Figure 25 (a)- Raw image 

 

 

Figure 25 (b)- Tagged image 

 

Figure 25 (c)- Adiposoft 

 

Figure 25 (d)-Fatquant 

 

Figures 16 – 25 are from 7 unique subject IDs and 3 random images with different fat 

percentage/neighboring cells. Image (a) are the raw sample histology images of pancreas; (b) are 

manual fat tagged images; (c) and (d) are outputs from Adiposoft and Fatquant respectively.  
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Table 1: Manually chosen parameters used by Adiposoft and Fatquant for optimal output in 

Figures 16 – 25 sample pancreatic histology images 

Figures Samples GTEx  

subject ID 

Adiposoft Fatquant 

Min. 

diameter 

Max. 

diameter 

Threshold 

value 

Min. 

diameter 

Max. 

diameter 

16 1 11DXZ-0826 20 135 230 27 130 

17 2 1122O-0726 25 500 228 25 500 

18 3 1117F-1726 22 500 228 29 500 

19 4 1117F-1726 20 180 233 24 150 

20 5 117YW-0926 20 280 231 24 250 

21 6 117YW-0926 22 280 229 27 250 

22 7 13PVQ-2026 22 250 226 29 200 

23 8 13FHP-1926 40 300 228 40 250 

24 9 13FHP-1926 22 210 228 22 190 

25 10 11WQC-0926 14 200 231 14 200 

 

 

Table 2: Calculation of accuracy on pancreas sample histology images in figures 16 – 25 

Samples Tool TP (in pixels) FP (in pixels) FN (in pixels) IoU 

1 Fatquant 110429 20387 871 0.839 

Adiposoft 0 0 111300 0 

2 Fatquant 81041 5597 468 0.930 

Adiposoft 46769 60732 34740 0.329 

3 Fatquant 591209 49758 11326 0.906 
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Adiposoft 571949 14599 30586 0.927 

4 Fatquant 72793 13053 5455 0.797 

Adiposoft 0 3245 78248 0 

5 Fatquant 899818 35098 8576 0.954 

Adiposoft 851499 2285 56895 0.935 

6 Fatquant 195357 5405 3457 0.957 

Adiposoft 0 6674 198814 0 

7 Fatquant 81834 146 5830 0.932 

Adiposoft 2065 14838 85599 0.020 

8 Fatquant 91516 1106 2498 0.962 

Adiposoft 0 0 94014 0 

9 Fatquant 75566 2377 1319 0.953 

Adiposoft 0 15468 196051 0 

10 Fatquant 219816 13070 8254 0.912 

Adiposoft 134342 64357 93728 0.459 

 

The parameter values of Adiposoft and Fatquant (mentioned in Table 1) are not exactly same 

because the default threshold or edge detection values used by Adiposoft are unknown to users. 

Hence for analysis, values have been chosen as per optimal output. Pixels being part of fat in (b) 

are marked with yellow color whereas pixels identified as fat in (c) and (d) are marked with cyan 

color.  

From the outputs it can be noted that Adiposoft only shows decent output when adipocytes cover 

maximum area of a sample image (e.g. Figures 18 and 20). In a heterogeneous sample image this 

tool can tag many non-fat areas as valid fats (e.g. Figures 21, 22 and 24). Moreover, it can even 
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fail to identify presence of any fat in an image (e.g. Figures 16 and 23). Hence, Fatquant 

performs better in the scenarios shown. The tagging of fat cells shown in (b) images are done by 

the authors as no ground truth data of the slides was available. 

Additionally, ten liver histology images were also analyzed and are available in ‘Liver samples’ 

directory of our GitHub repository. IoU of range 0.675 to 0.937 and 0 to 0.497 was identified 

using Fatquant and Adiposoft respectively, indicating wide applicability of our tool. The 

parameters used and accuracy on each image are shown in Tables 3 and 4. The outputs are 

shown below. 

 

Figure 26 (a)-Raw image 

 

 

Figure 26 (b)-Tagged image 

 

Figure 26 (c)-Adiposoft 

 

Figure 26 (d)-Fatquant 
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Figure 27 (a)- Raw image 

 

 

Figure 27 (b)- Tagged image 

 

Figure 27 (c)- Adiposoft 

 

Figure 27 (d)-Fatquant 

 

 

Figure 28 (a)- Raw image 

 

 

Figure 28 (b)- Tagged image 

 

Figure 28 (c)- Adiposoft 

 

Figure 28 (d)-Fatquant 
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Figure 29 (a)- Raw image 

 

 

Figure 29 (b)- Tagged image 

 

Figure 29 (c)- Adiposoft 

 

Figure 29 (d)-Fatquant 

 

 

Figure 30 (a)- Raw image 

 

 

Figure 30 (b)- Tagged image 

 

Figure 30 (c)- Adiposoft 

 

Figure 30 (d)-Fatquant 
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Figure 31 (a)- Raw image 

 

 

Figure 31 (b)- Tagged image 

 

Figure 31 (c)- Adiposoft 

 

Figure 31 (d)-Fatquant 

 

 

Figure 32 (a)- Raw image 

 

 

Figure 32 (b)- Tagged image 

 

Figure 32 (c)- Adiposoft 

 

Figure 32 (d)-Fatquant 
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Figure 33 (a)- Raw image 

 

 

Figure 33 (b)- Tagged image 

 

Figure 33 (c)- Adiposoft 

 

Figure 33 (d)-Fatquant 

 

 

Figure 34 (a)- Raw image 

 

 

Figure 34 (b)- Tagged image 

 

Figure 34 (c)- Adiposoft 

 

Figure 34 (d)-Fatquant 
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Figure 35 (a)- Raw image 

 

 

Figure 35 (b)- Tagged image 

 

Figure 35 (c)- Adiposoft 

 

Figure 35 (d)-Fatquant 

 

Figure 26-35 include six unique subject IDs and rest random images with different fat 

percentage/neighboring cells. Raw (a), manual tagged (b), Adiposoft (c) and Fatquant (d) outputs 

of each sample liver histology images. 

 

Table 3: Manually chosen parameters used by Adiposoft and Fatquant for optimal output in 

figure 26-35 sample liver histology images 

Figures Samples GTEx  

subject ID 

Adiposoft Fatquant 

 Min. 

diameter 

Max. 

diameter 

Threshold 

value 

Min. 

diameter 

Max. 

diameter 

26 1 11EMC-0326 14 100 227 18 90 

27 2 11EMC-0326 18 42 226 22 100 

28 3 11EQ9-0526 14 100 226 16 100 

29 4 11GS4-0926 14 100 226 18 100 

30 5 11GS4-0926 19 100 226 18 100 
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31 6 11GSO-0826 16 95 227 22 90 

32 7 11GSO-0826 13 34 226 14 90 

33 8 11NV4-1326 19 90 226 18 100 

34 9 11NV4-1326 19 90 226 22 90 

35 10 11O72-0926 18 22 223 16 80 

 

 

Table 4: Calculation of accuracy on liver sample histology images in figures 26 – 35 

Samples Tool TP (in pixels) FP (in pixels) FN (in pixels) IoU 

1 Fatquant 53527 3496 1291 0.918 

Adiposoft 23480 50420 31338 0.223 

2 Fatquant 82426 2970 2563 0.937 

Adiposoft 54410 59912 30579 0.375 

3 Fatquant 82873 5357 3868 0.900 

Adiposoft 0 1698 86741 0 

4 Fatquant 109075 9588 5708 0.877 

Adiposoft 47210 45192 67573 0.295 

5 Fatquant 83690 5350 2165 0.918 

Adiposoft 37072 58771 48783 0.256 

6 Fatquant 13776 1162 5700 0.668 

Adiposoft 9563 23556 9913 0.222 

7 Fatquant 49570 8228 1259 0.839 

Adiposoft 38614 30704 12215 0.474 

8 Fatquant 93577 6793 1685 0.917 
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Adiposoft 80351 66466 14911 0.497 

9 Fatquant 75279 2126 4524 0.919 

Adiposoft 58962 71464 20841 0.390 

10 Fatquant 4368 1466 15 0.747 

Adiposoft 2639 22297 1744 0.099 

 

Image (a) in Figures 36 – 41 are the sample images; (b) represents manual tagged and (c) 

represents Fatquant tagged areas of images in (a). As per the data mentioned in Table 5 it can be 

noted that fat cells available in Figures 36 – 38 are easy to get tagged by this tool, hence IoU 

value increases. Whereas the tool does not detect fat cell properly when cell boundaries are not 

clearly delineated as seen in Figures 39 – 41, hence IoU value decreases. So validity analysis 

performed on sample images with many fat cells similar to that of Figures 36 – 38 will likely 

show higher accuracy. Manual tagged data shown in (b) images are not collected from any 

laboratory website and are rather created by the authors. So, there can be some variation in 

ground truth data of these images created by any other source. In the GitHub repository 

mentioned, sample images used in Figures 16 – 25 and Figures 36 – 41 are available in 

‘Pancreas_samples’ and ‘Small_pancreas_samples’ directories respectively. 

 

 

Figure 36 (a)-sample 

 

Figure 36 (b)-tagged 

 

Figure 36 (c)-Fatquant 
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Figure 37 (a)-sample 

 

Figure 37 (b)-tagged 

 

Figure 37 (c)-Fatquant 

 

 

Figure 38 (a)-sample 

Figure 38(b)-tagged 
 

Figure 38 (c)-Fatquant 

 

 

Figure 39 (a)-sample 

 

Figure 39 (b)-tagged 

 

Figure 39 (c)-Fatquant 

 

 

Figure 40 (a)-sample 

 

Figure 40 (b)-tagged 

 

Figure 40 

(c)Fatquant 
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Figure 41 (a)-sample 

 

Figure 41 (b)-tagged 

 

Figure 41 (c)-

Fatquant 

 

Table 5: Accuracy of annotation by Fatquant in Figures 36 – 41  

Figures GTEx 

subject 

ID 

Threshold 

value 

Min. 

diameter 

Max. 

diameter 

TP (in 

pixels) 

FP (in 

pixels) 

FN (in 

pixels) 

IoU 

36 117YW-

0926 

229 20 180 17640 118 102 0.987 

37 1117F-

1726 

227 30 200 19321 269 15 0.985 

38 117YW-

0926 

228 20 200 26095 115 334 0.983 

39 111VG-

0926 

227 35 100 5692 1312 326 0.776 

40 117YW-

0926 

236 15 220 18178 499 7042 0.707 

41 117YW-

0926 

231 10 200 16441 484 7623 0.670 
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We also analyzed the H and E images using AdipoCount in which the detected fat areas are 

colored and non-fat areas are white but both of which contain noise. 

 

Sample H and E raw (left) image and AdipoCount (right) output image 

 

AdipoCount output (right) where each detected fat lacks a clear outline and is tagged with a 

range of similar colors is due to the image getting stored in lossy JPEG file format. Whereas the 

image output in Adiposoft can be stored in lossless file formats (TIF and PNG) because of which 

the issues mentioned above does not occur here and detected fat areas can be properly segmented 

and used for comparison with manually annotated image. 

 

Finally, we have demonstrated Fatquant output with images of higher resolution indicating 

applicability of our tool with whole slide images. However, due to limitations of RAM (12GB) 

on our system, we would need access to system of higher RAM (32GB or 64GB) to further 

validate tool with whole slide images. 
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Pancreas histology raw image (left) and Fatquant (right) output labeled in cyan color for a 

pancreas 8K resolution (7680 x 4320 pixels) image (GTEX-1117F-1726) with parameters: 

Binary Threshold value: 230, Minimum fat diameter: 55, Maximum fat diameter: 340. 

 

 

Liver histology raw image (left) and Fatquant (right) output labeled in cyan color for a liver 8K 

resolution (7680 x 4320 pixels) image (GTEX-11NV4-1326) with parameters: Binary Threshold 

value: 226, Minimum fat diameter: 19, Maximum fat diameter: 150. 

 

 

4. Discussion  

Pancreatic tumor segmentation [19, 25-27] and QuPath based fat analysis  [28] are deep learning 

approaches which require large training datasets [28]. Liver steatosis detection methods are 

currently either not open source software [14] or deep learning based methods [29]. The Fatquant 

tool helps to identify fat cells in heterogeneous histological tissue sections which would 

complement work of pathologists. The growing importance of fat cells in pathophysiological 

functions and with availability of whole slide digitized images, Fatquant can save significant 

amount of time for image analysis. Based on our analysis, Adiposoft shows decent output when 

adipocytes cover maximum area of a sample image and label non-fat areas as valid fat cells in 

heterogenous tissue sample images. In absence of ground truth images, we manually annotated 

fat cells in different pancreas and liver sample images from a public portal and then compared 

the output accuracy using IoU with Fatquant tool annotated results. We observed an intersection 

over union of 0.797 to 0.962 and 0.675 to 0.937 for pancreas and liver, respectively exhibiting 

high degree of similarity between manual versus Fatquant annotation. Moreover, we have shown 
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utility of our Fatquant tool for 8K resolution images and works well for both homogenous fat 

tissue and varied heterogenous tissues like pancreas, liver suggesting diverse applicability of the 

tool for analysis of fat cells. 
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