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Abstract
We study finite dimensional Fractional Lavrentiev Regularization (FLR) method for
linear ill-posed operator equations in the Hilbert scales. We obtain an optimal order
error estimate under Hölder type source condition and under a parameter choice
strategy. Numerical experiments confirming the theoretical results are also given.
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1 Introduction

Consider the ill-posed equation

Ax ¼ y; ð1Þ
where A : X �! Y is a bounded linear operator between the Hilbert spaces X and Y.
These type of equations have many applications for example, neural network [10],
image deblurring [20], magnetic resonance [27] and others. In practice, instead of y
we have yd with

ky� ydk� d: ð2Þ
The Eq. (1) is ill-posed, i.e., the solution is not continuously depending on the data.
So one has to consider regularization method for approximating the solution x̂ of the
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Eq. (1). In the most commonly used Tikhonov regularization method, the minimizer
xda of

JaðxÞ ¼ kAx� ydk2 þ a kxk2; ð3Þ
is used as an approximation for x̂: If the operator A in the Eq. (1) is positive self-
adjoint, then Lavrentiev regularization or Simplified regularization or Ritz regular-
ization method [3, 12, 23, 36, 37, 41, 43] is used. In this method, the minimizer wd

a of

JaðxÞ :¼ hAx; xi � 2 hyd; xi þ a hx; xi; 8 a[ 0; ð4Þ
is used as an approximation for x̂:

Note that xda satisfies

xda ¼ ðA�Aþ aIÞ�1A�yd;

and the minimizer wd
a of (4) satisfies

wd
a ¼ ðAþ aIÞ�1yd: ð5Þ

Observe that, if A ¼ A� is a positive self-adjoint operator, then we have

xda ¼ ðA2 þ aIÞ�1Ayd: ð6Þ
One can see that (6) involves more computation than (5), so in general Lavrentiev
regularization is used when A ¼ A� is a positive self-adjoint operator.

The solution of (3) and the solution of (4) oversmoothen the solution x̂ (see [17]).
The Fractional Tikhonov regularization (FTR) method [9, 14, 17, 28] and the
Fractional Lavrentiev regularization (FLR) method [15] were used to reduce the
oversmoothing of the solution x̂: In the FTR method, the minimizer xda;b of

Jba ðxÞ ¼ kAx� ydk2b þ a kxk2; ð7Þ

is considered to approximate x̂: Here kxkb ¼ kðAA�Þðb�1Þ=4xk for some parameter

0� b� 1 (see [9, 14]). Reddy in [35] considered the Engl type discrepancy
principles

Gða; ydÞ :¼ ka�ðA� AÞbþ1
2 þ aI

��1 ðA� AÞb�1
2 A�ydk2 ¼ s1

dp

aq
; 8 s1 [ 0;

and

G1ða; ydÞ :¼ kA�Axda;b � A�ydk2 ¼ dp

aq
; 8 p[ 0 ; q[ 0; a[ 0;

for choosing a for the fractional Tikhonov regularization method.
Later in [28], Morigi et al. further modified (7) by replacing the L2�norm in (7) by

TV�norm. Precisely, Morigi et al. [28] considered the minimizer of

123

C. Mekoth et al.



Jba ðxÞ ¼ kAx� ydk2b þ a kxk2TV ;
to approximate x̂; when A is an m� n real matrix. In [17], Klann and Ramlau
considered

xda;c ¼ ðA�Aþ aIÞ�cðA�AÞc�1A�yd forsome c[
1

2
;

to approximate x̂:
If A is a positive semi-definite operator, then the minimizer wa;b of the functional

Jba ðxÞ :¼ hAx; xi � 2 hy; xi þ a hAbx; xi; 8 a[ 0; ð8Þ
where 0� b\1 (to be made precise later), is taken as an approximation for x̂ (see
[16]). Note that the minimizer of (8) satisfies

ðAþ aAbÞwa;b ¼ y; ð9Þ
and so, if (8) has a minimizer with y ¼ yd; then we have

yd 2 RðAbÞ: ð10Þ
Note that, if yd ¼ Abz for some z, then (9) with yd in place of y takes the form

ðA1�b þ aIÞwa;b ¼ z;

and A1�b þ aI is invertible. In other words, for yd 2 RðAbÞ; (9) with yd has a unique
solution. But the set of admissible data yd satisfying (10) is extremely thin (nowhere
dense). This drawback can be overcome by considering finite dimensional realization
of (9). Therefore, we consider the finite dimensional realization of (9).

Note that, in (3), (4) and (7), a[ 0 is called the regularization parameter and kxk2
(or hx; xi) is the penalty term. Observe that the minimizer xda;b of (7) also satisfies

xda;b ¼ min
x2X

fkAx� ydk2 þ akðAA�Þ1�b
4 xk2g;

and the penalty term kðAA�Þ1�b
4 xk2 minimizes the over smoothing. Similarly, the

penalty term hAbx; xi in (8) minimizes the over smoothing of the regularized solution.
Natterer in 1984 [29] noticed the over smoothing of the Tikhonov regularization. The
minimizer of (7) satisfies

ððA�AÞ1þc þ aIÞxda;b ¼ ðA�AÞcA�yd; ð11Þ

where c ¼ b�1
2 � 0 (see [35]).

Even though, the FTR and FLR methods minimize the over smoothing occurred in
the Standard Tikhonov regularization (STR) and Standard Lavrentiev regularization
(SLR), the order of convergence for the FTR and FLR methods are smaller than that
of STR and SLR. In order to improve the order of the convergence, one can study the
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fractional Tikhonov as well as the fractional simplified regularization methods in the
setting of Hilbert scales [6–8, 11, 19, 21, 23, 24, 29–33, 39, 40] (see also Sect. 2).

Preliminaries are given in Sect. 2, the convergence analysis of the method is given
in Sect. 3. Section 4, deals with comparison between Standard Lavrentiev and
Fractional Lavrentiev regularization method in Hilbert scales, error bounds are given
in Sect. 5, numerical experiments are given in Sect. 6 and the paper ends with a
conclusion in Sect. 7.

2 Preliminaries

Let A : X �! X be an injective and positive self-adjoint operator defined on a real
Hilbert space X : We are concerned with the problem of approximating a solution x̂
(assumed to exist) of the ill-posed equation

Ax ¼ y: ð12Þ
As already mentioned in the introduction, our aim is to study the finite dimensional
realization of the fractional Lavrentiev regularization method for approximately
solving the Eq. (12) in the setting of Hilbert scales. So, let us first recall the definition
of Hilbert scales:

Definition 1 [23] A family fX sgs2R of Hilbert spaces is called a Hilbert scale if it
satisfies the following conditions:

(a) For s\t, X t � X s and X t is a dense subset of X s;
(b) As Hilbert spaces, the above inclusion is a continuous embedding, i.e., there

exists cs;t [ 0 such that

kxks � cs;tkxkt; 8 x 2 X t: ð13Þ

Let L : DðLÞ � X �! X ; be a linear, unbounded, self-adjoint operator, which
satisfies the following:

hLx; xi[ 0; DðLÞ ¼ X ; kLxk�kxk; 8 x 2 DðLÞ:
Let X t be the completion of D :¼ \1

k¼0DðLkÞ with the norm kxkt ¼ kLtxk; (here and
below k 	 k denotes the norm in X ) induced by the inner product

hu; vit ¼ hLtu; Ltvi; 8 u; v 2 D:

Then fX sgs2R (see [6]) satisfies the Definition 1 [6, 7, 41, 43].
In this study, we consider the Hilbert scale fX sgs2R: Note that the Hilbert scale

generated by L connects X with X s through the relation kxks ¼ kxkX s
¼ kLsxk ([2],

see also [19, Page 145]). We assume throughout the study that the operator A
satisfies:
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d1kxk�a �kAxk� d2kxk�a; x 2 X ð14Þ
for some a[ 0, d1 [ 0 and d2 [ 0: Let f ðtÞ :¼ minfdt1; dt2g; gðtÞ :¼ maxfdt1; dt2g
for all t 2 R and jtj � 1:

Proposition 1 c.f. ([29, Proposition 1]) Let A : X �! X be a bounded linear self-
adjoint operator that satisfies (14). Then, for jmj � 1;

f ðmÞkxk�ma �kðA�AÞm=2xk� gðmÞkxk�ma; 8 x 2 DððA�AÞm=2Þ:

Remark 1 Note that the above proposition is valid for bounded linear operator A
from a Hilbert space X into a Hilbert space Y.

For jsj � 2; let FðtÞ :¼ minff ðs2Þt; gðs2Þtg; GðtÞ :¼ maxff ðs2Þt; gðs2Þtg: Using the
above Proposition 1, and notation, we prove the following proposition, which will be
used extensively in our analysis.

Proposition 2 Let A : X �! X be a bounded linear self-adjoint operator satisfying
(14). Then we have the following:

(1) For all x 2 DðAmÞ and jmj � 1,

f ðmÞkxk�ma �kAmxk� gðmÞkxk�ma:

(2) For all x 2 DðAs=2L�s=2Þ, s[ 0 and jsj � 2;

f ðs
2
Þkxk�saþs

2
�kAs

2L�s=2xk� gðs
2
Þkxk�saþs

2
:

(3) For all x 2 DððL�s=2AsL�s=2Þm=2Þ, s[ 0, jsj � 2 and jmj � 1,

FðmÞkxk�mðsaþs
2 Þ � kðL�s=2AsL�s=2Þm=2xk�GðmÞkxk�mðsaþs

2 Þ:

Proof Proof of (1) follows from Proposition 1 since A�A ¼ A2: Note that, if we take
m ¼ s=2 in (1), then we obtain

f
s
2

� �
kxk�sa

2
�kAs

2xk� g
s
2

� �
kxk�sa

2
; 8 x 2 D A

s
2

� �
: ð15Þ

By taking x ¼ L�s=2x in (15), we obtain (2). The proof of (3) follows by taking
A ¼ As=2L�s=2 in Proposition 1. h

Let fPhgh[ 0 be a family of orthogonal projections of X onto RðPhÞ, which is the
range of Ph: Let

�h :¼ kAðI � PhÞk �! 0 as h �! 0:

Let Ah :¼ PhAPh: Then we have kðAh � AÞxk�kPhAðPh � IÞxk þ kðPh � IÞAxk:
Therefore we assume that
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kðAh � AÞxk �! 0; ð16Þ
as h �! 0: This condition is satisfied if, for example A is a compact operator and
Ph �! I pointwise. So, let h0 [ 0 be such that

kðAh � AÞxk� ~�h ¼ d1kxk�a

2
; 8 x 6¼ 0; h� h0: ð17Þ

Hereafter, we assume that h� h0: Let �d1 ¼ d1
2 and �d2 ¼ d2 þ d1

2 : Using the above
notation, we have the following lemma:

Lemma 3 Let �d1 and �d2 be as above. Then, for all Phx 6¼ 0 we have

�d1kxk�a �kAhxk� �d2kxk�a: ð18Þ

Proof Using (16) and (17), we have

kAhxk�kAxk þ kðAh � AÞxk
� d2kxk�a þ ~�h

� �d2kxk�a;

and

kAhxk�kAxk � kðAh � AÞxk
� d1kxk�a � ~�h

� �d1kxk�a:

h

Let �f ðtÞ :¼ minf�dt1; �dt2g and �gðtÞ :¼ maxf�dt1; �dt2g for all t 2 R and jtj � 1:
Analogously to the proof of [29, Proposition 1], one can prove the following
proposition:

Proposition 4 Let Ah : X �! X be a bounded linear self-adjoint operator that
satisfies (18). Then, for Phx 6¼ 0 and jmj � 1; we have

�f ðmÞkxk�ma �kðA�
hAhÞm=2xk� �gðmÞkxk�ma; x 2 DððA�

hAhÞm=2Þ:

For jsj � 2; let

�FðtÞ :¼ min
n
�f ðs
2
Þt; �gðs

2
Þt
o
; �GðtÞ :¼ max

n
�f ðs
2
Þt; �gðs

2
Þt
o
:

Using the above Proposition 4, above notation and the proof of Proposition 2, one
can prove the following proposition:

Proposition 5 Let Ah : X �! X be a bounded linear self-adjoint operator
satisfying (18). Then, for Phx 6¼ 0; we have
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(1) For all x 2 DðAm
hÞ and jmj � 1,

�f ðmÞkxk�ma �kAm
hxk� �gðmÞkxk�ma:

(2) For all x 2 DðAs=2
h L�s=2Þ, s[ 0 and jsj � 2;

�f
s
2

� �
kxk�saþs

2
�kAs

2
hL

�s=2xk� �g
s
2

� �
kxk�saþs

2
:

(3) For all x 2 DððL�s=2As
hL

�s=2Þm=2Þ, s[ 0, jsj � 2 and jmj � 1,

�FðmÞkxk�m saþs
2ð Þ � kðL�s=2As

hL
�s=2Þm=2xk� �GðmÞkxk�m saþs

2ð Þ:

3 Finite dimensional realization of FLR in Hilbert scales

Consider the minimizer ws
a;b of the following functional:

J sa;bðxÞ ¼ hAx; xi � 2 hy; xi þ a hAbx; xis
2
; 8 a[ 0; s[ 0; ð19Þ

where 0� b� 1 (to be precised later), as an approximation for x̂. Note that the
minimizer ws

a;b satisfies the equation

ðAþ aAbLsÞws
a;b ¼ y: ð20Þ

For b ¼ s ¼ 0; (20) is Lavrentiev regularization of (12). Throughout this study we
assume that the available data yd satisfies (2), in this case instead of (20) we consider

ws;d
a;b;h satisfying the equation:

ðAh þ aAb
hL

sÞws;d
a;b;h ¼ Phy

d; ð21Þ
as an approximation for x̂: Let

Bb;s :¼ L�s=2A1�bL�s=2

and

Bb;s;h :¼ L�s=2A1�b
h L�s=2:

Then we have

ws
a;b ¼ L�s=2ðBb;s þ aIÞ�1L�s=2A�by; ð22Þ

ws
a;b;h :¼ L�s=2ðBb;s;h þ aIÞ�1L�s=2A�b

h Phy ð23Þ
and
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ws;d
a;b;h ¼ L�s=2ðBb;s;h þ aIÞ�1L�s=2A�b

h Phy
d: ð24Þ

Since Bb;s and Bb;s;h for all s[ 0 are self-adjoint operators, we have

kðBb;s þ aIÞ�1Bl
b;sk� al�1; 8 0� l� 1; a[ 0; ð25Þ

and

kðBb;s;h þ aIÞ�1Bl
b;s;hk� al�1; 8 0� l� 1; a[ 0: ð26Þ

Lemma 6 Let ws
a;b;h and ws;d

a;b;h be as in (23) and (24), respectively. Let A satisfy (14)

and (17) holds. Then, for 0� b� 2 sþa
3a ; s� a we have

kws
a;b;h � ws;d

a;b;hk�uðs; a; b; hÞa �a
ð1�bÞaþsd;

where uðs; a; b; hÞ :¼
�G �ðs�2baÞ

ð1�bÞaþs

� �
�F s

ð1�bÞaþs

� �
�f ðbÞ

:

Proof By (23) and (24), we have

kws;d
a;b;h � ws

a;b;hk ¼kL�s=2ðBb;s;h þ aIÞ�1L�s=2A�b
h Phðyd � yÞk

¼kðBb;s;h þ aIÞ�1L�s=2A�b
h Phðyd � yÞk�s=2:

So, from Proposition 5 (3) with

m ¼ s

ð1� bÞaþ s
; s ¼ 1� b; x ¼ ðBb;s;h þ aIÞ�1L�s=2A�b

h Phðyd � yÞ

and (26), we obtain in turn that

kws;d
a;b;h � ws

a;b;hk

� 1

�F s
ð1�bÞaþs

� � kB s
2½ð1�bÞaþs

b;s;h ðBb;s;h þ aIÞ�1L�s=2A�b

h Phðyd � yÞk ¼ 1

�F s
ð1�bÞaþs

� �
� kB

s�ba
ð1�bÞaþs

b;s;h ðBb;s;h þ aIÞ�1B
�ðs�2baÞ

2½ð1�bÞaþs

b;s;h L�s=2A�b

h Phðyd � yÞk

� 1

�F s
ð1�bÞaþs

� � kB s�ba
ð1�bÞaþs

b;s;h ðBb;s;h þ aIÞ�1k

� kB
�ðs�2baÞ

2½ð1�bÞaþs

b;s;h L�s=2A�b

h Phðyd � yÞk

� 1

�F s
ð1�bÞaþs

� � a �a
ð1�bÞaþskB

�ðs�2baÞ
2½ð1�bÞaþs

b;s;h L�s=2A�b

h Phðyd � yÞk:

ð27Þ
Next, we prove the following:
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���B �ðs�2baÞ
2½ð1�bÞaþs

b;s;h L�s=2A�b

h Phðyd � yÞ
���� �G �ðs�2baÞ

ð1�bÞaþs

� �
�f ðbÞ d: ð28Þ

Take

m ¼ �ðs� 2baÞ
ð1� bÞaþ s

; s ¼ 1� b; x ¼ L�s=2A�b
h Phðyd � yÞ

in Proposition 5 (3) and Proposition 5 (1) with m ¼ b, we obtain

kB
�ðs�2baÞ

2½ð1�bÞaþs

b;s;h L�s=2A�b

h Phðyd � yÞk

� �G
�ðs� 2baÞ
ð1� bÞaþ s

� �
kL�s=2A�b

h Phðyd � yÞks=2�ba

¼ �G
�ðs� 2baÞ
ð1� bÞaþ s

� �
kA�b

h Phðyd � yÞk�ba

�
�G �ðs�2baÞ

ð1�bÞaþs

� �
�f ðbÞ kyd � yk

�
�G �ðs�2baÞ

ð1�bÞaþs

� �
�f ðbÞ d:

h

Now, we will make use of the following formula ([18, Page 287]) to estimate
kws

a;b;h � ws
a;bk:

Bzx ¼ sinpz
p

Z 1

0
tz
h
ðBþ tIÞ�1x� hðtÞ

t
xþ . . .þ ð�1Þn hðtÞ

tn
Bn�1x

i
dt

þ sin pz
p

h x
z
� Bx

z� 1
þ . . .þ ð�1Þn�1 Bn�1x

z� nþ 1

i
; 8 x 2 X ;

where

hðtÞ ¼ 0; if 0� t� 1;

1; if 1\t�1

	

for any positive self-adjoint operator B and for any complex number z such that
0\Re z\n: Taking z ¼ 1� b and 0� b� 1; we have by the above formula, for any
Z 2 X ;
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½ðA2
hÞ

1�b
2 � ðA2Þ1�b

2 
Z ¼ sinpð1� bÞ
p

Z 1

0
k

1�b
2 ðA2

h þ kIÞ�1ðA2 � A2
hÞðA2 þ kIÞ�1Zdk:

ð29Þ
The following assumption is used to estimate kx̂� ws

a;bk:
Assumption 1 There exist some E[ 0 and 0\t�ð1� bÞ a2 þ s such that

x̂ 2 Mt;E ¼ fx 2 X : kxkt �Eg:

Lemma 7 Let ws
a;b;h;w

s
a;b be as in (23) and (22), respectively. Let A satisfy (14) and

(17) hold. Then,

kws
a;b;h � ws

a;bk�u1ðs; a; b; hÞa
�a

ð1�bÞaþseh;

where u1ðs; a; b; hÞ :¼ 1
�Fð 2 s

ð1�bÞaþsÞ
�G 2ba

ð1�bÞaþs

� �
1

�f ðbÞ kx̂k þ Ch; with

Ch ¼ 8
�Gð �sþ2ba

ð1�bÞaþsÞ
�Fð s

ð1�bÞaþsÞ�f ðbÞ
sin pð1�b

2 Þ
p

a
t

gð�t
a ÞGð s�2t

ð1�bÞaþsÞ
Fð s�2t

ð1�bÞaþsÞ
kx̂kt þ 2kAk Gð s�2t

ð1�bÞaþsÞ
Fð s�2t

ð1�bÞaþsÞ
kx̂k


 �
:

Proof Note that

ws
a;b;h ¼ðA1�b

h þ aLsÞ�1A�b
h Phy

¼ðA1�b
h þ aLsÞ�1A�b

h PhAx̂

¼ðA1�b
h þ aLsÞ�1A1�b

h x̂þ ðA1�b
h þ aLsÞ�1A�b

h PhAðI � PhÞx̂;
ws
a;b ¼ðA1�b þ aLsÞ�1A�by

¼ðA1�b þ aLsÞ�1A1�bx̂

and hence

ws
a;b;h � ws

a;b ¼½ðA1�b
h þ aLsÞ�1A1�b

h � ðA1�b þ aLsÞ�1A1�b
x̂
þ ðA1�b

h þ aLsÞ�1A�b
h PhAðI � PhÞx̂:

So

kws
a;b;h � ws

a;bk�kèk þ kðA1�b
h þ aLsÞ�1A�b

h PhAðI � PhÞx̂k; ð30Þ

where è ¼ ½ðA1�b
h þ aLsÞ�1A1�b

h � ðA1�b þ aLsÞ�1A1�b
x̂:
Further, we have
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kðA1�b
h þ aLsÞ�1A�b

h PhAðI � PhÞx̂k
�kL�s

2ðBb;s;h þ aIÞ�1L�
s
2A�b

h PhAðI � PhÞx̂k

� 1
�Fð s

ð1�bÞaþsÞ
kðBb;s;h þ aIÞ�1B

s�ba
ð1�bÞaþs

b;s;h B
�ðs�2baÞ

2½ð1�bÞaþs

b;s;h L

�s
2 A�b

h PhAðI � PhÞx̂k

� 1
�Fð s

ð1�bÞaþsÞ
a

�a
ð1�bÞaþs

� kB
�ðs�2baÞ

2½ð1�bÞaþs

b;s;h L

�s
2 A�b

h PhAðI � PhÞx̂k

� 1
�Fð s

ð1�bÞaþsÞ
a

�a
ð1�bÞaþs �G

2ba� s

ð1� bÞaþ s

� �
kA�b

h PhAðI � PhÞx̂k�ba

� 1
�Fð s

ð1�bÞaþsÞ
a

�a
ð1�bÞaþs �G

2ba� s

ð1� bÞaþ s

� �
1

�f ðbÞ kPhAðI � PhÞx̂k

� 1
�Fð s

ð1�bÞaþsÞ
�G

2ba� s

ð1� bÞaþ s

� �
1

�f ðbÞ �hkx̂ka
�a

ð1�bÞaþs;

ð31Þ

and

è ¼½L�s=2ðBb;s;h þ aIÞ�1Bb;s;h � L�s=2ðBb;s þ aIÞ�1Bb;s
Ls
2x̂

¼L�s=2ðBb;s;h þ aIÞ�1½Bb;s;hðBb;s þ aIÞ � ðBb;s;h þ aIÞBb;s
ðBb;s þ aIÞ�1L
s
2x̂

¼L�s=2ðBb;s;h þ aIÞ�1a½Bb;s;h � Bb;s
ðBb;s þ aIÞ�1L
s
2x̂

¼L�s=2ðBb;s;h þ aIÞ�1a½L�s=2A1�b
h L�s=2 � L�s=2A1�bL�s=2
ðBb;s þ aIÞ�1L

s
2x̂

¼L�s=2ðBb;s;h þ aIÞ�1L�s=2ðA1�b
h � A1�bÞaL�s

2ðBb;s þ aIÞ�1L
s
2x̂

¼L�s=2ðBb;s;h þ aIÞ�1L�s=2ððA2
hÞ

1�b
2 � ðA2Þ1�b

2 ÞaL�s
2ðBb;s þ aIÞ�1L

s
2x̂

so by (29), we have

è ¼ sin pð1�b
2 Þ

p
L�s=2ðBb;s;h þ aIÞ�1

�
Z 1

0
k

1�b
2 L�s=2ðA2

h þ kIÞ�1ðA2 � A2
hÞðA2 þ kIÞ�1aZdk

where Z ¼ L�s=2ðBb;s þ aIÞ�1Ls=2x̂. Therefore,
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kèk� 1
�Fð s

ð1�bÞaþsÞ
sinpð1�b

2 Þ
p

kB
s

2½ð1�bÞaþs

b;s;h ðBb;s;h þ aIÞ�1

�
Z 1

0
k

1�b
2 L�s=2ðA2

h þ kIÞ�1ðA2 � A2
hÞðA2 þ kIÞ�1aZkdk

� 1
�Fð s

ð1�bÞaþsÞ
sinpð1�b

2 Þ
p

akB
2s�2ba

2½ð1�bÞaþs

b;s;h ðBb;s;h þ aIÞ�1

�
Z 1

0
k

1�b
2 B

�sþ2ba
2½ð1�bÞaþs

b;s;h L�s=2ðA2

h þ kIÞ�1ðA2 � A2
hÞðA2 þ kIÞ�1Zkdk

� 1
�Fð s

ð1�bÞaþsÞ
sinpð1�b

2 Þ
p

a
2s�2ba

2½ð1�bÞaþs


�
Z 1

0
k

1�b
2 kB

�sþ2ba
2½ð1�bÞaþs

b;s;h L�s=2ðA2

h þ kIÞ�1ðA2 � A2
hÞðA2 þ kIÞ�1Zkdk

�
�Gð �sþ2ba

ð1�bÞaþsÞ
�Fð s

ð1�bÞaþsÞ
sin pð1�b

2 Þ
p

a
s�ba

ð1�bÞaþs

�
Z 1

0
k

1�b
2 kL�s=2ðA2

h þ kIÞ�1ðA2 � A2
hÞðA2 þ kIÞ�1Zks

2�ba dk

�
�Gð �sþ2ba

ð1�bÞaþsÞ
�Fð s

ð1�bÞaþsÞ�f ðbÞ
sinpð1�b

2 Þ
p

a
s�ba

ð1�bÞaþs

�
Z 1

0
k

1�b
2 kðA2

hÞ
b
2ðA2

h þ kIÞ�1½AhðA� AhÞ þ ðA� AhÞA
ðA2 þ kIÞ�1Zkdk

�
�Gð �sþ2ba

ð1�bÞaþsÞ
�Fð s

ð1�bÞaþsÞ�f ðbÞ
sinpð1�b

2 Þ
p

½L1 þ L2


ð32Þ

where L1 ¼ a
s�ba

ð1�bÞaþs
R1
0 k

1�b
2 kðA2

hÞ
b
2ðA2

h þ kIÞ�1½AhðA� AhÞ
ðA2 þ kIÞ�1Zkdk and

L2 ¼ a
s�ba

ð1�bÞaþs
R1
0 k

1�b
2 kðA2

hÞ
b
2ðA2

h þ kIÞ�1½ðA� AhÞA
ðA2 þ kIÞ�1Zkdk.
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L1 � a
s�ba

ð1�bÞaþs

Z 1

0
k

1�b
2 kðA2

hÞ
b
2ðA2

h þ kIÞ�1AhkkðA� AhÞkkðA2 þ kIÞ�1A
t
akkA� t

aZkdk

þ a
s�ba

ð1�bÞaþs

Z 1

1
k

1�b
2 kðA2

hÞ
b
2ðA2

h þ kIÞ�1kkAhkkðA� AhÞkkðA2 þ kIÞ�1Zkdk

� a
s�ba

ð1�bÞaþs

Z 1

0
k

t
2a�12ehkA� t

aZkdk

þ a
s�ba

ð1�bÞaþs

Z 1

1

kAhk2ehkZk
k

3
2

dk

� a
s�ba

ð1�bÞaþs
2a

t
2ehkA� t

aZk þ 4kAhk2ehkZk

 �

:

ð33Þ
Further, observe that

kA�t
a Zk ¼kA�t

a L�s=2ðBb;s þ aIÞ�1Ls=2x̂k
� gð�t

a
ÞkðBb;s þ aIÞ�1Ls=2x̂kt�s

2

� gð�t
a Þ

Fð s�2t
ð1�bÞaþsÞ

kðBb;s þ aIÞ�1B
s�2t

2½ð1�bÞaþs

b;s Ls=2x̂k

�
gð�t

a ÞGð s�2t
ð1�bÞaþsÞ

Fð s�2t
ð1�bÞaþsÞ

a�1kx̂kt

ð34Þ

and

kZk ¼kL�s=2ðBb;s þ aIÞ�1Ls=2x̂k

�
Gð s�2t

ð1�bÞaþsÞ
Fð s�2t

ð1�bÞaþsÞ
a�1kx̂k: ð35Þ

Therefore, from (33), (34) and (35) it follows that

L1 � 4
a

t

gð�t
a ÞGð s�2t

ð1�bÞaþsÞ
Fð s�2t

ð1�bÞaþsÞ
kx̂kt þ 2kAhk

Gð s�2t
ð1�bÞaþsÞ

Fð s�2t
ð1�bÞaþsÞ

kx̂k
" #

eh a
�a

ð1�bÞaþs: ð36Þ

Proceeding in a similar manner for L2 we get

L2 � 4
a

t

gð�t
a ÞGð s�2t

ð1�bÞaþsÞ
Fð s�2t

ð1�bÞaþsÞ
kx̂kt þ 2kAk

Gð s�2t
ð1�bÞaþsÞ

Fð s�2t
ð1�bÞaþsÞ

kx̂k
" #

eh a
�a

ð1�bÞaþs: ð37Þ

The result, follows from (30), (32) (36), (37) and the fact that kAhk�kAk: h

Lemma 8 Let ws
a;b be as in (22), A satisfies (14) and suppose that Assumption 1

holds. Then, for 0\b� 2 sþa
3a ; s� a; we have
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kx̂� ws
a;bk�wðs; a; b; tÞa t

ð1�bÞaþs;

where

wðs; a; b; tÞ :¼
G s�2t

ð1�bÞaþs

� �
F s

ð1�bÞaþs

� � E:

Proof By Assumption 1 and (22), we have

x̂� ws
a;b ¼x̂� ðA1�b þ aLsÞ�1A�by

¼aðA1�b þ aLsÞ�1Lsx̂

¼aL�s=2ðBb;s þ aIÞ�1Ls=2x̂;

that is,

kx̂� ws
a;bk ¼ akðBb;s þ aIÞ�1Ls=2x̂k�s=2:

Thus, by Proposition 2 (3) (by taking m ¼ s
ð1�bÞaþs) and (25), we have

kx̂� ws
a;bk�

1

F s
ð1�bÞaþs

� ����aB s
2½ð1�bÞaþs

b;s ðBb;s þ aIÞ�1Ls=2x̂

���
� 1

F s
ð1�bÞaþs

� ����aB t
ð1�bÞaþs

b;s ðBb;s þ aIÞ�1
������B s�2t

2½ð1�bÞaþs

b;s Ls=2x̂

���

�
G s�2t

ð1�bÞaþs

� �
F s

ð1�bÞaþs

� � a t
ð1�bÞaþskx̂kt

�
G s�2t

ð1�bÞaþs

� �
F s

ð1�bÞaþs

� � a t
ð1�bÞaþsE:

h

Combining Lemmas 6, 7 and 8, we obtain the following theorem:

Theorem 9 Let ws;d
a;b;h be as in (24), A satisfies (14) and suppose that Assumption 1

and (17) hold. Then, for 0� b� 2 sþa
3a ; s� a we have

kx̂� ws;d
a;b;hk�u2ðs; a; b; hÞa

�a
ð1�bÞaþsðdþ �hÞ þ wðs; a; b; tÞa t

ð1�bÞaþs;

where u2ðs; a; b; hÞ ¼ maxfu1ðs; a; b; hÞ;uðs; a; b; hÞg: In particular, if a :¼
aðs; a; b; h; tÞ ¼ c0ðdþ �hÞ

ð1�bÞaþs
tþa for some c0 [ 0; then
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kx̂� ws;d
a;b;hk� gðs; a; b; tÞðdþ �hÞ

t
tþa;

where gðs; a; b; h; tÞ ¼ max
�
u2ðs; a; b; hÞc

�a
ð1�bÞaþs

0 ;wðs; a; b; tÞc
t

ð1�bÞaþs

0


:

3.1 Order optimality

As in [26], we define the best possible worst error for identifying the solution x̂ of
(12) from yd 2 X satisfying (2) and x̂ satisfying Assumption 1 as

HðMt;E; dÞ ¼ inf
R
supfkx̂� Rydk : x̂ 2 Mt;E; y

d 2 X ; kAx̂� ydk� dg:

Here, the minimum is taken over all regularization methods R : X �! X : Let

eðMt;E; dÞ :¼ supfkxk : x 2 Mt;E; kAxk� dg:
Then, since X is a Hilbert space and A is positive self-adjoint, we have (see [25])
eðMt;E; dÞ ¼ HðMt;E; dÞ:

A regularization method Ra with a parameter choice strategy a ¼ aðdÞ is said to be
of optimal order if

kRay
d � x̂k ¼ OðeðMt;E; dÞÞ:

Using the interpolation inequality (see [19]):

kxks �kxkhrkxk1�h
t ; 8x 2 X t;

where r� s� t and h ¼ t�s
t�r with r ¼ �a and s ¼ 0; we obtain

kxk�kxk t
tþa�akxk

a
tþa
t

� kAxk
d1

� � t
tþa

kxk
a

tþa
t

� d
d1

� � t
tþa

kxk
a

tþa
t ; 8; x 2 Mt;E;

and the above estimate is sharp (see [42]).
So, a regularization method is called optimal order yielding regularization method

with respect to Mt;E and (14) if it yields an approximation, say Rayd with ky�
ydk� d and satisfies

kRay
d � x̂k ¼ Oðd t

tþaÞ:

Theorem 9 shows that we obtained the optimal order for the choice of a :¼
aðs; a; b; tÞ ¼ c0d

ð1�bÞaþs
tþa for some c0 [ 0:
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4 Standard Lavrentiev method vs FLR method in Hilbert scales

The filter factors [15] of the SLR method and the FLR method in the Hilbert scales
are compared in this section. Recall [6–8, 22] that the Lavrentiev regularized solution
for (12) in Hilbert scales is given by

ws
a ¼ L�s=2ðL�s=2AL�s=2 þ aIÞ�1L�s=2y: ð38Þ

So, using Proposition 2 (3) with s ¼ 1, we have

kws
ak�

1

Fð s
sþaÞ

kðL�s=2AL�s=2Þ s
2ðsþaÞðL�s=2AL�s=2 þ aIÞ�1L�s=2yk

� 1

Fð s
sþaÞ

kðL�s=2AL�s=2Þ s
ðsþaÞðL�s=2AL�s=2 þ aIÞ�1

� ðL�s=2AL�s=2Þ �s
2ðsþaÞL�s=2yk

ð39Þ

and hence

kws
ak2 �

1

Fð s
sþaÞ2

Z kL�s=2AL�s=2k

0

k
s

ðsþaÞ

kþ a

 !2

� dhEkðL�s=2AL�s=2Þ �s
2ðsþaÞL�s=2y; ðL�s=2AL�s=2Þ �s

2ðsþaÞL�s=2yi;
ð40Þ

where fEk : 0� k�kL�s=2AL�s=2kg is the spectral family of L�s=2AL�s=2: Similarly,
we have

kws
a;bk�

1

F s
ð1�bÞaþs

� �
� kB

2s�2ba
2½ð1�bÞaþs

b;s ðBb;s þ aIÞ�1B

�ðs�2baÞ
2½ð1�bÞaþs

b;s L�s=2A�byk

ð41Þ

and hence

kws
a;bk2 �

1

F s
ð1�bÞaþs

� �2
Z kBb;sk

0

k
s�ba

ð1�bÞaþs

kþ a

 !2

� dhFkB
�ðs�2baÞ

2½ð1�bÞaþs

b;s L�s=2A�by;B

�ðs�2baÞ
2½ð1�bÞaþs

b;s L�s=2A�byi;

ð42Þ

where fFk : 0� k�kBb;skg is the spectral family of Bb;s: Further, note that
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dhEkðL�s=2AL�s=2Þ �s
2ðsþaÞL�s=2y; ðL�s=2AL�s=2Þ �s

2ðsþaÞL�s=2yi
¼ kEkðL�s=2AL�s=2Þ �s

2ðsþaÞL�s=2yk2

�kðL�s=2AL�s=2Þ �s
2ðsþaÞL�s=2yk2

�G2
� �s

sþ a

�
kyk2:

Similarly, we obtain

d
D
FkB

�ðs�2baÞ
2½ð1�bÞaþs

b;s L�s=2A�by;B

�ðs�2baÞ
2½ð1�bÞaþs

b;s L�s=2A�by

E

�
G �ðs�2baÞ

ð1�bÞaþs

� �
f ðbÞ

0
@

1
A

2

kyk2:

So, the quality of the the solution ws
a and w

s
a;b are depending on the integrands in (40)

and (42), respectively.

Let u1ðtÞ :¼ t
s

ðsþaÞ
tþa and u2ðtÞ :¼ t

s�ba
ð1�bÞaþs

tþa : The functions u1 and u2 are called the
filter factors [15, 17] of the SLR method in Hilbert scales and the FLR method in
Hilbert scales, respectively. Figure 1a shows the filter function t �! u1ðtÞ for the
SLR method in Hilbert scales. Figure 1b shows the filter function t �! u2ðtÞ for the
FLR method in Hilbert scales for b ¼ 0:5; 0:35; 0:25; 0:2; 0:1:

Note that one would like the filter functions to satisfy

lim
t�!0

u1ðtÞ ¼ 0 and lim
t�!0

u2ðtÞ ¼ 0:

Note that (see Fig. 1a and b) the filter function u2ðtÞ is smoother than the filter
function u1ðtÞ near 0.

t

0.5

1

1.5

2

2.5

t s/( s+ a ) /( t + α( i ))

alpha=0.1
alpha=0.001
alpha=0.001

(a) ϕ1(t) as a function of t.

t0 0.2 0.4 0.6 0.8 1 1.2
0 0.2 0.4 0.6 0.8 1 1.2

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

t ( s-β( j) a )/(( 1 -β( j)) a + s) /( t + α( i ))

alpha=0.1 beta=0.5
alpha=0.1 beta=0.35
alpha=0.1 beta=0.25
alpha=0.1 beta=0.2
alpha=0.1 beta=0.1

(b) Filter function ϕ2(t) for α = 0.1 and
β = 0.5, 0.35, 0.25, 0.2, 0.1.

Fig. 1 Filter function u2ðtÞ plotted for different parameters
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Remark 2 (cf. [1, Proposition 10]) Note that dþeh

a
a

ð1�bÞaþs
is increasing for b 2 ½0; sa
;

whereas a
t

ð1�bÞþs (see Theorem 9) is decreasing for b 2 ½0; sa
: Therefore, one has to

choose b 2 ½0; sa
 such that dþeh

a
a

ð1�bÞaþs
¼ a

t
ð1�bÞþs in order to obtain an optimal order error

estimate for kx̂� ws;d
a;b;hk: For a fixed d[ 0; t[ 0; s[ 0; a[ 0 and a 2 ½dsþa

aþt ; d
a

aþt
;
the best possible choice for b is

b ¼ 1þ s

a
� aþ t

a

� � log a
logðdþ ehÞ :

In this case, b 2 ½0; sa
 and a ¼ ðdþ ehÞ
ð1�bÞaþs

aþt : But such a b and a is almost impos-
sible in practice because t is unknown. So, in Sect. 5, we study the modified form of
parameter choice strategy in [5].

5 Error bounds under a parameter choice strategy

In this section, we study the analogous of the discrepancy principle considered by
George and Nair [5]. For a fixed s� 0; b� 0 and q[ � 1; let

Fs;b;hða; xÞ ¼ aqþ1kðBb;s;h þ aIÞ�ðqþ1ÞL�s=2xk; 8 x 2 X ; a[ 0:

Let c[ c�s
2 ;0

and yd 2 X be such that

0\cðdþ �hÞ� kL�s=2ydk: ð43Þ
Next, we prove the existence of a unique solution for

Fs;b;hða; ydÞ ¼ cðdþ �hÞ:

Proposition 10 Let c be as in (43). Then there exists a unique a :¼
aðd; b; h; s; ydÞ[ 0 such that

Fs;b;hða; ydÞ ¼ cðdþ �hÞ: ð44Þ
Furthermore, we have

ðc� c�s
2 ;0

Þðdþ �hÞ�Fs;b;hða; yÞ� ðcþ c�s
2 ;0

Þðdþ �hÞ: ð45Þ

Proof Note that
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F2
s;b;hða; ydÞ
¼ a2ðqþ1ÞhðBb;s;h þ aIÞ�ðqþ1ÞL�s=2yd; ðBb;s;h þ aIÞ�ðqþ1ÞL�s=2ydi

¼
Z kBb;s;hk

0

a
kþ a

� �2ðqþ1Þ
dhFkL

�s=2yd; L�s=2ydi;
ð46Þ

where fFk : 0� k�kBb;s;hkg is the spectral family of Bb;s;h: Now, since the map

a �! uða; kÞ :¼ a
kþa

� �2ðqþ1Þ
is strictly increasing for k[ 0; we have

uða; kÞ �! 0 as a �! 0

and

uða; kÞ �! 1 as a �! 1;

by the Dominated Convergence Theorem, there exists a unique a :¼
aðd; b; h; s; ydÞ[ 0 satisfying (44).

The second part of the proposition follows by noting that

Fs;b;hða; yÞ�Fs;b;hða; y� ydÞ þ Fs;b;hða; ydÞ
� kL�s=2ðy� ydÞk þ Fs;b;hða; ydÞ
� ðc�s

2 ;0
þ cÞðdþ �hÞ;

and

Fs;b;hða; yÞ�Fs;b;hða; ydÞ � Fs;b;hða; y� ydÞ
� cðdþ �hÞ � kL�s=2ðy� ydÞk
� ðc� c�s

2 ;0
Þðdþ �hÞ;

where we used the relation kL�s=2xk� c�s
2 ;0

kxk for all x 2 X : h

The proof of the following proposition is analogous to the proof of Proposition 3.5
in [5] and so details are ignored.

Proposition 11 (see [5, Proposition 3.5]) Let yd satisfy (43) and 0 6¼ y 2 X : Let
ðdþ �hÞ[ 0 and a :¼ aðd; b; h; s; ydÞ[ 0 be chosen according to (44). Then there
exists d0 þ �h;0 [ 0 such that

S :¼faðd; b; h; s; ydÞ : 0\ðdþ �hÞ� d0 þ �h;0 and

0\cðd0 þ �h;0Þ� kL�s=2ydk; ky� ydk� dg;
is a bounded set.

Theorem 12 Let A satisfy (14) and (17) hold. Suppose, x̂ 2 X ; 0\t� min
n
sþ

qðsþ ð1� bÞaÞ; s�ð1þbÞa
2

o
; yd satisfies (2), (43) and a :¼ aðd; b; h; s; ydÞ satisfies

(44). Then, for 0\b� 2sþa
3a ; s� a; we have
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kx̂� ws;d
a;b;hk�Uðs; a; b; h; tÞðdþ �hÞ

t
ðqþ1Þ½ð1�bÞaþs
;

where

Uðs; a; b; h; tÞ ¼max
n
u2ðs; a; b; hÞCs;b;h;a;tc

sþ2t
2ðqþ1Þ½ð1�bÞaþs

s;b;q ;

wðs; a; b; tÞEc
t

2ðqþ1Þðqþ1Þ½ð1�bÞaþs

s;b;q

o
;

cs;b;q ¼ kðBb;s;hþaIÞðqþ1Þk
kyk�s=2

ðcþ c�s
2 ;0

Þ and Cs;b;h;a;t ¼
�Gð �2ðaþtÞ

ð1�bÞaþsÞ
f ðs�2ðaþtÞ

2a Þ gð
s�2t
2a Þct�s=2;tE: In particular,

if q ¼ tþba�s
ð1�bÞaþs ; then we have

kx̂� ws;d
a;b;hk�Uðs; a;b; h; tÞðdþ �hÞ

t
tþa:

Proof Note that, from (45), we have

aqþ1kyk�s=2

kðBb;s;h þ aIÞðqþ1Þk
�Fs;b;hða; yÞ� ðcþ c�s

2 ;0
Þðdþ �hÞ;

so that

a� c1=ðqþ1Þ
s;b;q ðdþ �hÞ1=ðqþ1Þ: ð47Þ

Again, by (45) and (25), we have

ðc� c�s
2 ;0

Þðdþ �hÞ
� aqþ1kðBb;s;h þ aIÞ�ðqþ1ÞL�s=2yk

� aqþ1
���ðBb;s;h þ aIÞ�ðqþ1ÞB

aþt
ð1�bÞaþs

b;s;h

������B �ðaþtÞ
ð1�bÞaþs

b;s;h L�s=2y
���

� a
aþt

ð1�bÞaþs

���B �ðaþtÞ
ð1�bÞaþs

b;s;h L�s=2y
���:

ð48Þ

Now, using Proposition 5 (3) and Proposition 2 (1), we have
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���B �ðaþtÞ
ð1�bÞaþs

b;s;h L�s=2y
��� ¼

���B �ðaþtÞ
ð1�bÞaþs

b;s;h L�s=2Ax̂
���

� �G
�2ðaþ tÞ

ð1� bÞaþ s

� �
kL�s=2Ax̂kaþt

�
�Gð �2ðaþtÞ

ð1�bÞaþsÞ
f ðs�2ðaþtÞ

2a Þ
���As�2t

2a x̂
���

�
�Gð �2ðaþtÞ

ð1�bÞaþsÞ
f ðs�2ðaþtÞ

2a Þ
g
� s� 2t

2a

�
kx̂kt�s=2

�
�Gð �2ðaþtÞ

ð1�bÞaþsÞ
f ðs�2ðaþtÞ

2a Þ
g
� s� 2t

2a

�
ct�s=2;tkxkt;

ð49Þ

where ct�s=2;t is the constant in Definition 1. Combining (48) and (49), we obtain

ðc� c�s
2 ;0

Þd�
�Gð �ðaþtÞ

ð1�bÞaþsÞ
f ðs�2ðaþtÞ

2a Þ
g
� s� 2t

2a

�
ct�s=2;tEa

aþt
ð1�bÞaþs;

so that

da
�a

ð1�bÞaþs �Cs;b;h;a;ta
t

ð1�bÞaþs: ð50Þ
Therefore, the result follows from Theorems 9, (47) and (50). h

6 Numerical examples

Let L : DðLÞ � X �! X be a mapping defined by

Lx :¼
X1
j¼1

j2hx; ujiuj;

where ujðtÞ ¼
ffiffiffi
2

p
sinðjptÞ for each j 2 N with domain of L as

DðLÞ :¼ x 2 L2½0; 1
 :
X1
j¼1

j4jhx; ujij2\1
( )

:

In this case, the Hilbert scale fXgs generated by L is given by

X s ¼
n
x 2 L2½0; 1
 :

X1
j¼1

j4sjhx; ujij2\1
o

¼
n
x 2 H2sð0; 1Þ : xð2lÞð0Þ ¼ xð2lÞð1Þ ¼ 0; l ¼ 0; 1; . . .; ds

2
� 1

4
e
o
;

ð51Þ

where dpe denotes the greatest integer less than or equal to p; s 2 R and Hs is the
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usual Sobolev space. Also, one can see that H0 ¼ L2½0; 1
 and, for each s 2 N,
Hs � Hs:

Now, we consider four examples to validate the theoretical results. We use finite
dimensional subspaces ðVnÞ of X and Phðh ¼ 1

nÞ : X �! Vn are orthogonal
projection. We choose Vn as the linear span of fv1; v2; . . .; vng with vi for each
i ¼ 1; 2; . . .; n as the L2� orthogonalized characteristic functions of the interval

½i�1
n ; in
: Then, since ws;d

a;b;h 2 Vn; it is of the form
Pn

i¼1 kivi; where k1; k2; . . .; kn are

scalars. It can be seen that ws;d
a;b;h ¼

Pn
i¼1 kivi is the solution of (21) if and only if

�k ¼ ðk1; 	 	 	 ; knÞT is the solution of

ðMn þ aBnÞ�k ¼ Wn;

where

Mn ¼ hAhvi; vji; 8i; j ¼ 1; 2; . . .; n;

Bn ¼ hLsvi;Ab
hvji; 8i; j ¼ 1; 2; . . .; n;

and

Wn ¼ ðhyd; v1i; . . .; hyd; vniÞT :

Here and below, ða1; a2; . . .; anÞT denote the transpose of ða1; a2; . . .; anÞ: We have
used SVD as in [35] for our computations.

Newton’s method is used to solve the nonlinear equations (44) for a: The relative

error Ea;b :¼ kx̂�ws;d
a;bk

kws;d
a;bk

� �
and a are given in the tables for b, q ¼ tþba�s

ð1�bÞaþs with t ¼
�baþ s=3; n ¼ 300 (mesh size) and noise d:

We have used the random noise d ¼ 0:1; 0:01 and 0:001 and �h ¼ �1
n
¼ 1

n2 :

Example 1 ([38, Shaw]) Let

½Tx
ðsÞ :¼
Z p

�p
kðs; tÞxðtÞdt ¼ gðsÞ; �p� s� p; ð52Þ

where kðs; tÞ ¼ ðcosðsÞ þ cosðtÞÞ2ðsinðuÞu Þ2, u ¼ pðsinðsÞ þ sinðtÞÞ.
We take A :¼ T�T jNðT�TÞ? and y ¼ T �g for our computation.

The solution x̂ is given by x̂ðtÞ ¼ a1 expð�c1ðt � t1Þ2Þ þ a2 expð�c2ðt � t2Þ2Þ:We
have taken s ¼ a ¼ 1

2 ; d1 ¼ d2 ¼ 1
p2 in our computation. The relative error and a

values are given in Tables 1 and Table 2. The figures for exact data and noise data for

Table 1 Relative errors for fixed a

b 0 0.05 0.1 0.15 0.2

Ea;b 6:801195e� 01 6:766239e� 01 6:726160e� 01 6:679884e� 01 6:626066e� 01

123

C. Mekoth et al.



d ¼ 0:01 is given in Fig. 2a, solutions with d ¼ 0:01 and for b ¼ 0; 0:05; 0:1; 0:15
and b ¼ 0:2 are given in Fig. 2b–f. The sub-figure (a) contains the noise data and
exact data and remaining sub-figures contain the exact solution (exact sol.) and
computed solution (C.S).

Example 2 ([34, Phillips]) LetZ 6

�6
kðs; tÞxðtÞdt ¼ gðsÞ; �6� u� 6; ð53Þ

where kðs; tÞ ¼ /ðs� tÞ with

/ðxÞ ¼ 1þ cosðx � p=3Þ; jxj\3;

0; jxj � 3:

	

We take A :¼ T�T jNðT�TÞ? and y ¼ T �g; where

gðsÞ ¼ ð6� jsjÞ � ð1þ :5 � cosðs � p=3ÞÞ þ 9=ð2 � pÞ � sinðjsj � p=3Þ;
for our computation. The solution x̂ is given by x̂ðtÞ ¼ /ðtÞ: We have taken s ¼
a ¼ 1

2 ; d1 ¼ d2 ¼ 1
36 in our computation. The relative error and a values are given in

Table 3 and Table 4. The figures for noise data and exact data for d ¼ 0:01 is given in
Fig. 3, solutions with d ¼ 0:01 and for b ¼ 0; 0:05; 0:1; 0:15 and b ¼ 0:2 are given
in Fig. 3b–f. The sub-figure (a) contains the noise data and exact data and remaining
sub-figures contain the exact solution (exact sol.) and computed solution (C.S).

Example 3 (Non-smooth Signal) In this example we generate a square wave with
sharp edges to analyse the performance of the Lavrentiev and fractional Lavrentiev
method. The Lavrentiev regularization results in smoothing of sharp discontinuities
where as the fractional Lavrentiev retains the sharpness in the signal thus reducing
the over-smoothing effect. We have taken s ¼ a ¼ 1

2 in our computation. The results
are shown in Fig. 4b–d. The results of the proposed fractional Lavrentiev
regularization model are shown in Fig. 4c, d for different b values.

Table 2 Relative errors under discrepancy principle

d b 0 0.05 0.1 0.15 0.2
q 5.000000e�01 5.128205e�01 5.263158e�01 5.405405e�01 5.555556e�01

0.1 aðkÞ 5.931937e�04 6.229828e�04 6.892837e�04 7.511112e�04 8.620988e�04

Ea;b 2.016406e�01 1.936678e�01 2.040882e�01 1.878488e�01 4.261247e�01

0.01 aðkÞ 5.929687e�04 6.232274e�04 6.893498e�04 7.513056e�04 8.627321e�04

Ea;b 9.689599e�02 9.355126e�02 8.139111e�02 9.526484e�02 9.511034e�02

0.001 aðkÞ 5.929932e�04 6.232488e�04 6.893604e�04 7.513294e�04 8.627484e�04

Ea;b 9.617521e�02 8.861288e�02 8.175922e�02 7.492941e�02 7.269160e�02
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δ = 0.01.
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(f) Solutions with δ = 0.01 and
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Fig. 2 Exact and evaluated solutions for different d and b for Shawn example
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In the next example, we consider an image restoration problem:

Example 4 (Image Restoration Example) Here we show some examples to
demonstrate the restoration ability of the method when applied to different images.
IR Tool: a Matlab package for iterative inverse problems in [4] and Algebraic IR
Tools in [13] are being used here for the numerical implementation of the model for
2D images (both gray-scale and color).

Two test images (a satellite image and a synthetic image) given along with the IR/
AIR tools (package) are tested and the results are demonstrated below. The test image
is synthetically corrupted by Gaussian blur with standard deviation 2 and Gaussian
white noise with zero mean and noise variance 0.05. The test results are shown for
standard Lavrentiev regularization and the proposed model (fractional Lavrentiev
model). The standard Lavrentiev model tends to perform denoising by penalizing the
image details resulting in an over-smoothed data as observed from the results.
Nevertheless, the proposed model restores the images without compromising much
on the details.

The original, noisy, and restored images are shown in Figs. 5 and 6 for the two
different input test images. The proposed restoration process is observed to denoise
the data and preserve the details as observed from the results shown for different b
values. A statistical quantification has been performed using the well-known
measure: Signal to Noise Ratio (SNR)1. The SNR of the noisy and restored versions
of the test images for different b values are given in Table 5. The SNR measure being
inversely proportional to the root mean square error, it increases with decrease in b
value unlike the relative error.

Table 3 Relative errors for fixed a

b 0 0.05 0.1 0.15 0.2

Ea;b 6:303972e� 01 6:253094e� 01 6:174618e� 01 6:046162e� 01 5:830876e� 01

Table 4 Relative errors with discrepancy principle

d b 0 0.05 0.1 0.15 0.2
q 5.000000e�01 5.263158e�01 5.405405e�01 5.555556e�01 5.555556e�01

0.1 aðkÞ 1.805922e�02 2.575646e�02 3.576999e�02 4.785191e�02 6.326033e�02

Ea;b 3.515146e�01 2.315353e�01 3.511560e�01 3.068689e�01 2.925603e�01

0.01 aðkÞ 1.807031e�02 2.576193e�02 4.825071e�02 4.823351e�02 6.338610e�02

Ea;b 6.661885e�02 5.778094e�02 2.703130e�02 4.506687e�02 3.913097e�02

0.001 aðkÞ 1.806768e�02 2.578385e�02 3.576453e�02 4.824909e�02 6.336271e�02

Ea;b 2.007506e�02 1.797936e�02 2.382614e�02 2.033829e�02 2.208742e�02

1 SNR=20 log10

PN

i¼0

PM

j¼0
x̂ði;jÞ2PN

i¼0

PM

j¼0
½x̂ði;jÞ2�xði;jÞ
2

dB, where x and x̂ are the original and restored images, respectively.
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(f) Solutions with δ = 0.01 and
β = 0.2.

Fig. 3 Exact and evaluated solutions for different d and b for Phillips example
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7 Conclusion

In this paper, we study the finite dimensional realization of the FLR method for
approximately solving the (linear ill-posed operator) equation AðxÞ ¼ y in Hilbert
Scales. We have also studied an a-priori and a-posteriori parameter choice strategy
and obtained an optimal order error estimate under each of them. The FLR method
reduces the over-smoothing in the SLR method in Hilbert space and Hilbert scales as
mentioned in the introduction. The regularization saturation for the FLR method is
t ¼ sþ ð1� bÞa=2, whereas that of the SLR method is t ¼ sþ a[ sþ ð1� bÞa=2:
The choice of optimal value for b is still an open problem.

We have applied the methods to various well-known examples in literature and
also to an image restoration problem. The magnitude of smoothing(regularization)
with respect to b can be seen from the example given for image restoration problem.
As the noise variance increases, the value of b also needs to be decreased in order to
obtain a proper restoration. Nevertheless the blurring artifacts start appearing in the
resultant data as b increases. The value of b should provide a trade-off between
smoothing and deblurring as these two are two complementary requirements.
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150

Original
Noisy

(a) Original and noisy input signal:
Contaminated with Gaussian noise with

standard deviation σ = 0.15.

0

50

100

150

Original
Tikhonov

(b) Lavrentiev regularization
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150
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(c) Fractional Lavrentiev: β = 0.1
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0 50 100 150 200 250 300

0 50 100 150 200 250 300 0 50 100 150 200 250 300
0
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(d) Fractional Lavrentiev: β = 0.2

Fig. 4 Exact and evaluated solutions for different b
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Fig. 5 a Original image, b blurred and noisy image, c restored using Lavrentiev regularization and d–f
restored using the proposed model for b ¼ 0:1; 0:15; 0:2; respectively
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Fig. 6 a Original image, b blurred and noisy image, c restored using Lavrentiev regularization and d–f
restored using the proposed model for b ¼ 0:1; 0:15; 0:2; respectively
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